簡易檢索 / 詳目顯示

研究生: 劉宥銘
YOU-MING LIU
論文名稱: 透過風格學習與推薦建造中國特色建築模型
Modeling Chinese Feature Buildings by Style Learning and Recommendation
指導教授: 戴文凱
Wen-Kai Tai
口試委員: 蔡侑庭
Yu-Ting Tsai
賴祐吉
Yu-Chi Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 程序化內容生成中國特色建築-涼亭類神經網路
外文關鍵詞: Procedural Content Generation, Chinese features architecture - Ting, Neural network
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在東方題材相關的電影或遊戲場景中,通常會有大量的中國特色建築。由於
    其結構複雜,即使使用3D 建模工具軟體,在建立模型時,仍需要大量時間與相
    關背景知識。何況一個場景中往往含有大量的建築物,是一個需要極大人力成本
    的工程,對於非專業人員更是一大難題。我們的目的是使用程序化生成大量中國
    特色建築中之涼亭,且這些涼亭符合使用者喜好,對於非專業人員而言也好上手
    的3D 建模方式。
    本研究中,我們讓使用者選取涼亭樣本,其中樣本是以涼亭框架與控制點配
    合參數建立而成。在取樣過程中,依照不同數量的參考樣本,給予不同的取樣策
    略,讓目標樣本可以順利地被找到。用這種方式可以減少建構中國特色建築模型
    時,開發人員所需的背景知識。更可以藉由過程中提供的不同樣本激發創造力。
    透過對樣本的選取與喜好程度之評分後,我們利用類神經網路,根據樣本參數與
    喜好分數之間的關係,產生出一個當前喜好風格的類神經網路模型(Model)。我們
    將涼亭結構分為Roof、Body 與Platform 三個部分,將三個學習標的類神經網路模
    型學習完成後,利用此三個類神經網路模型來推薦大量具有使用者喜好風格的3D
    模型。
    依據我們提出的程序化建模之實驗結果,系統可以加速取樣到使用者欲尋找
    的目標樣本,且在過程中只需要使用視覺進行觀察與選取。再者使用類神經網路
    進行風格學習,可以有效的學習出使用者喜好與樣本之間的關係。在學習完成後,
    即可推薦大量使用者喜好的涼亭樣本,達到減少生成大量3D 模型的時間。在整
    個使用過程中,有助於使用者了解中國特色建築與激發創造力,並且不需要大量
    的背景知識。在使用者回饋結果中,皆能推薦出使用者喜好之風格涼亭樣本。


    In Eastern movie or game scenes, there are usually use a lot of Chinese-characteristic
    buildings. Due to its complex structure, even using 3D modeling software. It takes a lot
    of time and related background knowledge to build these architectural models. What’s
    more, a scene often contains a lot of buildings, it requires a lot of labor costs. For nonprofessionals
    is a big problem. Our goal is to use programmatic generation of a large
    number of Ting with Chinese characteristics. And these Ting meet user preferences, it is
    also a good 3D modeling method for non-professionals.
    In this study, we allow the user to select Ting samples. The sample is based on the
    parameters of the Ting frame and control points. During the sampling process, according
    to different number of reference samples, we give different sampling strategies. Let the
    target sample can be found successfully. In this way, it is possible to reduce background
    knowledge, when developer construction of architectural models with Chinese characteristics.
    It can stimulate creativity through different samples provided in the process. After
    the selection of the sample and give scores of preference, We generate a neural network
    model based on the relationship between sample parameters and preference scores. We
    divide the Ting structure into Roof, Body, and Platform. After these three neural network
    models are be created by learning, we use these three models to recommend a large number
    of 3D models with user preferences.
    The experimental results of our procedural modeling method ,the system can accelerate
    sampling to the target sample which is user looking for. In the process, only visual
    observation and selection are needed. Using neural networks for style learning, which can
    effectively learn the relationship between user preferences and samples. After learning is
    completed, system can recommend a large number of Ting samples with user preferences.
    Reducing time to generate large numbers of 3D models, and users don’t need a lot of background
    knowledge. Learn more about characteristics of Chinese-characteristic buildings
    in the process, and stimulate the effect of creativity.In the result of user study, we found
    out that our system can recommend the user preferences style Ting samples.

    論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景與動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 方法概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.4 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5 本論文之章節結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 程序化建模方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 推薦系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 參數化關係與模型探索. . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 機器學習與推薦系統. . . . . . . . . . . . . . . . . . . . . . . 5 3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 展現樣本. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 取樣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 取樣策略- 未選擇. . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 取樣策略- 單選. . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.3 取樣策略- 多選. . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Style Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 參數介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 學習方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3.3 訓練結果應用. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 推薦樣本. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 取樣策略實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Neural Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 學習成效. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Hidden Layer Nodes . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3.1 使用者成果展示. . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 成果展示. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.1 其他類型屋頂與風格. . . . . . . . . . . . . . . . . . . . . . . 47 5 結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    [1] C.-Y. Huang and W.-K. Tai, “Ting tools: interactive and procedural modeling of
    chinese ting,” The Visual Computer, vol. 29, no. 12, pp. 1303–1318, 2013.
    [2] Y.-C. Chung and W.-K. Tai, “An icon-based procedural approach for chinese featured
    buildings,” Master’s thesis, National Taiwan University of Science and Technology,
    Republic of China, 2017.
    [3] J. Liu, “Component-driven pocedural modeling for ancient chinese architecture of
    the qing dynasty,” International Journal of Architectural Heritage, vol. 12, no. 2,
    pp. 280–307, 2018.
    [4] L. Krecklau, D. Pavic, and L. Kobbelt, “Generalized use of non-terminal symbols for
    procedural modeling,” Computer Graphics Forum, vol. 29, no. 8, pp. 2291–2303,
    2010.
    [5] I. Demir, D. G. Aliaga, and B. Benes, “Proceduralization for editing 3d architectural
    models,” 3D Vision (3DV), 2016 Fourth International Conference on, pp. 194–202,
    2016.
    [6] P. B. Silva, P. Müller, R. Bidarra, and A. Coelho, “Node-based shape grammar representation
    and editing,” in Proceedings of the Workshop on Procedural Content
    Generation in Games (PCG’13), 2013.
    [7] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems Handbook.
    New York, NY, USA: Springer-Verlag New York, Inc., 1st ed., 2010.
    [8] K. Leimer, L. Gersthofer, M. Wimmer, and P. Musialski, “Relation-based
    parametrization and exploration of shape collections,” Computers & Graphics,
    vol. 67, pp. 127–137, 2017.
    [9] Y. Zhang, Z. Liu, Z. Miao, W. Wu, K. Liu, and Z. Sun, “Single image-based datadriven
    indoor scene modeling,” Computers & Graphics, vol. 53, pp. 210–223, 2015.
    [10] M. Pirovano, R. Mainetti, and D. Loiacono, “Volcano: An interactive sword generator,”
    in Games Entertainment Media Conference (GEM), 2015 IEEE, pp. 1–8, IEEE,
    2015.
    [11] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music recommendation,”
    Advances in neural information processing systems, pp. 2643–2651,
    2013.
    [12] S. H. Hsu, M.-H. Wen, H.-C. Lin, C.-C. Lee, and C.-H. Lee, “Aimed-a personalized
    tv recommendation system,” in European Conference on Interactive Television,
    pp. 166–174, Springer, 2007.
    [13] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet collaborative
    filtering,” in Proceedings of the 24th International Conference on World
    Wide Web, pp. 111–112, ACM, 2015.
    [14] C. Christakou, S. Vrettos, and A. Stafylopatis, “A hybrid movie recommender system
    based on neural networks,” International Journal on Artificial Intelligence Tools,
    vol. 16, no. 05, pp. 771–792, 2007.
    [15] M. Dang, S. Lienhard, D. Ceylan, B. Neubert, P. Wonka, and M. Pauly, “Interactive
    design of probability density functions for shape grammars,” ACM Transactions on
    Graphics (TOG), vol. 34, no. 6, p. 206, 2015.
    [16] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis
    with applications to biology, control, and artificial intelligence. MIT press, 1992.
    [17] Wikipedia, “Fitness proportionate selection — Wikipedia, the free encyclopedia.”
    https://en.wikipedia.org/wiki/Fitness_proportionate_selection,
    2003. [Online; accessed 29-March-2018].
    [18] 羅哲文, 中國古代建築. Shanghai: 上海古籍出版社, 1990.
    [19] 丁援, 一本就通:中國建築. Taipei: 聯經出版公司, 2015.
    [20] Q. D. of Qing Dynasty, Qing Gong Bu Gongcheng Zuofa Zeli. China: Beijing, Qing
    Dynasty of China, 1733.
    [21] E. Catmull and R. Rom, “A class of local interpolating splines,” in Computer aided
    geometric design, pp. 317–326, Elsevier, 1974.
    [22] Wikipedia, “興慶宮— Wikipedia, the free encyclopedia.” https://zh.
    wikipedia.org/wiki/%E5%85%B4%E5%BA%86%E5%AE%AB, 2006. [Online; accessed
    29-March-2018].
    [23] Wikipedia, “琵琶亭— Wikipedia, the free encyclopedia.” https://zh.
    wikipedia.org/wiki/%E7%90%B5%E7%90%B6%E4%BA%AD, 2010. [Online; accessed
    29-March-2018].
    [24] E. Panadero and A. Jonsson, “The use of scoring rubrics for formative assessment
    purposes revisited: A review,” Educational Research Review, vol. 9, pp. 129–144,
    2013.
    [25] Wikipedia, “Supervised learning — Wikipedia, the free encyclopedia.” https://
    en.wikipedia.org/wiki/Supervised_learning, 2005. [Online; accessed 15-
    March-2018].
    [26] Wikipedia, “Nonlinear regression — Wikipedia, the free encyclopedia.” https://
    en.wikipedia.org/wiki/Nonlinear_regression, 2007. [Online; accessed 15-
    January-2018].
    [27] Blueteak, “Unity-neural-network.” https://github.com/Blueteak/
    Unity-Neural-Network, 2017. [Online; accessed 31-July-2017].
    [28] Wikipedia, “Cross-validation (statistics) — Wikipedia, the free encyclopedia.”
    https://en.wikipedia.org/wiki/Cross-validation_(statistics), 2003.
    [Online; accessed 5-April-2018].
    [29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
    network acoustic models,” in International conference on machine learning, vol. 30,
    p. 3, 2013.

    無法下載圖示 全文公開日期 2023/07/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE