簡易檢索 / 詳目顯示

研究生: 李威德
Wei-te Li
論文名稱: 以反應性濺鍍選擇性成長氧化釕奈米桿
Selective Growth of RuO2 Nanorods Using Reactive Sputtering
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 黃鶯聲
Ying-Sheng Huang
洪儒生
Lu-Sheng Hong
呂宗昕
Chuan-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 二氧化釕奈米桿選擇性成長
外文關鍵詞: RuO2, nanorod, selective growth
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文藉由反應性濺鍍的方法,研究在濺鍍矽網印於SA(100)及SA(012)基板上,選擇性區域成長二氧化釕奈米桿。二氧化釕奈米桿垂直成長於SA(100)基板上,傾斜35o成長於SA(012)基板,利用SEM與XRD觀察其形貌及結晶性。XPS分析結果顯示氧化釕奈米桿表面具有高於計量比的釕,可能是沉積時以富釕的沉積物種進行沉積。選區成長的原理可追溯至其初期成長時在不同表面上的成核情形,二氧化釕在SA(100)及SA(012)表面上成核相當迅速,而在氧化矽表面上則不易成核,藉由二氧化釕於不同表面上成核能障的差異,以實現選區成長。實驗顯示當濺鍍瓦數為50W,基板溫度控制在200oC時,可得到最佳二氧化釕奈米桿的選擇性成長結果;若當基板溫度低於180oC時,於成長區內只能形成二氧化釕的薄膜,且因沉積物種在基板上的移動能力較差,易於停留在非成長區內沉積,造成選區成長失敗。而當基板溫度高於230oC時,由於物種脫附效應逐漸主導了整個成長過程,故可以相當清楚的定義出成長區與非成長區,但是亦失去了一維奈米結構的特徵,轉變為一顆顆的氧化釕晶柱。接著再改變沉積時的濺鍍功率,匹配不同的基板溫度,整理出不同濺鍍功率和基板溫度彼此之間對選擇性成長的關係,試圖發展出可兼顧二氧化釕一維奈米結構及優良之選擇性成長的最適成長範圍。


The technique of area-selective growth of RuO2 nanorods via reactive sputtering is explored in this master thesis. The substrates are sapphire (100) and (012), denoted as SA(100) and SA(012), patterned with SiO2 using a copper grid mask. The RuO2 nanorods are vertically aligned on SA(100), tilted 35 with respect to the substrate normal on SA(012). Each nanorod is a RuO2 single crystal, confirmed by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). The Ru:O ratio on the surface of sputtered RuO2 nanorods is higher than the stoichiometric 1:2 ratio, measured by X-ray photoelectron spectroscopy.
The success of area-selective growth relies on the difference between nucleation barriers on the noncrystalline SiO2 and the sapphire surfaces. RuO2 nucleates with ease on SA(100) and SA(012) surface, but slowly on the noncrystalline SiO2 surface. When the RuO2 clusters constantly diffuse away from the nongrowth area of SiO2 surface, meanwhile nucleate and grow in the growth area of SA(100) or SA(012), a pattern of RuO2 nanorods can be achieved. Our experimentation shows that the optimum conditions for selective growth of RuO2 nanorods were sputtering power at 50 W and substrate temperature at 200C. If the substrate temperature was less than 180C, the less mobile growth species tend to deposit in the nongrowth region, and the RuO2 film (not rods) grow in the growth region. If the substrate temperature is higher than 230C, a clearly defined pattern can be achieved, but the nanorods lose their one-dimensional feature and become stout rods. When the sputtering power is raised to 60 W, the selective growth temperature region for nanorods decreases. In this work we have outlined the growth domain for area-selective growth of RuO2 nanorods and discuss the morphological variation of RuO2 crystals.

中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1-1 二氧化釕晶體結構 1 1-2 二氧化釕晶體特性及應用 4 1-3 一維奈米材料 7 1-4 一維奈米材料的成長機制 9 第二章 實驗原理與文獻回顧 15 2-1 濺鍍薄膜成長 15 2-2 選擇性成長基本原理 18 2-3 文獻回顧 21 2-4 研究動機 24 第三章 實驗步驟和分析方法 25 3-1 實驗材料與藥品 25 3-2 實驗設備 27 3-2-1 薄膜濺鍍系統 27 3-2-2 二氧化釕反應性濺鍍系統 29 3-3 實驗流程 31 3-4 實驗步驟 32 3-4-1 晶片洗淨處理 32 3-4-2 濺鍍矽膜 32 3-4-3 二氧化釕奈米桿沉積步驟 34 3-5 分析儀器 36 第四章 結果與討論 39 4-1 二氧化釕一維奈米桿成長與分析 39 4-1-1 二氧化釕奈米桿成長形貌FE-SEM電鏡圖 40 4-1-2 二氧化釕奈米桿XRD分析 45 4-1-3 二氧化釕奈米桿XPS表面分析 47 4-2 二氧化釕一維奈米桿選擇性成長 51 4-2-1 二氧化釕於氧化矽表面上之成長行為 51 4-2-2 二氧化釕初期成長行為 53 4-2-3 二氧化釕奈米桿選擇性成長FE-SEM電鏡圖 59 4-2-4 不同濺鍍功率對二氧化釕奈米桿選擇性成長之影響 73 第五章 結論 90 參考文獻 92 圖目錄 圖1-1 二氧化釕金紅石(rutile)結構單位晶胞示意圖 1 圖1-2 二氧化釕金紅石(rutile)結構示意圖:(a)平面圖;(b)立體圖 2 圖1-3 非等向性晶體成長示意圖:(a)硒的晶格結構;(b)硒奈米線掃描式電子顯微鏡圖 10 圖1-4 利用模板輔助成長奈米柱或奈米管示意圖 11 圖1-5 鍺奈米線成長機制示意圖:(a)奈米線成長的三個步驟;(b)金-鍺二成份相圖中成長三步驟示意圖 12 圖1-6 鍺奈米線臨場穿透式電子顯微鏡圖:(a)奈米金粒子於500oC下;(b) 800oC下開始形成合金;(c)合金液化;(d)鍺結晶成核析出;(e)(f)結晶繼續析出成長為奈米線。 13 圖2-1 薄膜成長機制示意圖 16 圖2-2 選擇性成長一維奈米結構示意圖;(a)空白的基板;(b)於基板上定義出成長區及非成長區;(c)成長一維奈米結構於所定義的成長區內,而非成長區中依然保持乾淨的表面 20 圖2-3 選擇性成長奈米碳管陣列示意圖;(a)奈米碳管陣列;(b)於成長區的成長情形示意圖 21 圖2-4 單根奈米碳管的一維陣列 22 圖3-1 薄膜濺鍍設備示意圖 28 圖3-2 二氧化釕反應性濺鍍系統示意圖 30 圖3-3 實驗流程圖 31 圖4-1 成長於SA(100)二氧化釕奈米桿FE-SEM電鏡圖;(a)俯視圖;(b)截面圖 41 圖4-2 成長於SA(012)二氧化釕奈米桿FE-SEM電鏡圖;(a)俯視圖;(b)截面圖 42 圖4-3 成長於SA(100)不同濺鍍功率下二氧化釕奈米桿FE-SEM電鏡圖;(a)65W;(b)50W;(c)40W 44 圖4-4 成長於SA(100)之氧化釕奈米桿XRD繞射圖 45 圖4-5 成長於SA(012)之氧化釕奈米桿XRD繞射圖 46 圖4-6 氧化釕奈米桿XPS能譜圖:(a)Ru 3d;(b)O 1s 49 圖4-7 氧化釕奈米桿經過60秒氬離子束蝕刻XPS能譜圖:(a)Ru 3d;(b)O 1s 50 圖4-8 氧化釕成長於氧化矽基板之FE-SEM電鏡圖:(a)70W;(b) 60W;(c)50W;(d)40W;(e)成長形貌示意圖 52 圖4-9 氧化釕於SA(100)上初期成長FE-SEM電鏡圖:(a)2min;(b)3min;(c)4min;(d)5min 55 圖4-10 氧化釕於SA(012)上初期成長FE-SEM電鏡圖:(a)2min;(b)3min;(c)4min;(d)5min 56 圖4-11 氧化釕於氧化矽基板上初期成長FE-SEM電鏡圖:(a)30min;(b)45min;(c)60min 57 圖4-12 氧化釕覆蓋面積對成長時間作圖 58 圖4-13 基板溫度為160oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)選擇性成長情形;(b)氧化釕薄膜形貌;(c)非成長區內成長行為 60 圖4-14 基板溫度為160oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)氧化釕薄膜形貌 61 圖4-15 基板溫度為180oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)奈米桿形貌 63 圖4-16 基板溫度為180oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 64 圖4-17 基板溫度為200oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)(e)奈米桿形貌 65 圖4-18 基板溫度為200oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)奈米桿形貌 66 圖4-19 基板溫度為235oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 68 圖4-20 基板溫度為235oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 69 圖4-21 基板溫度為250oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 70 圖4-22 基板溫度為270oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 71 圖4-23 基板溫度為270oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)選擇性成長情形;(b)(c)氧化釕薄膜形貌 72 圖4-24 濺鍍功率40W,基板溫度為160oC,氧化釕奈米桿選擇性成長FE-SEM電鏡圖:(a)選擇性成長情形;(b)非成長區內成長情形;(c)成長於SA(100)上氧化釕薄膜形貌;(d)成長於SA(012)上氧化釕薄膜形貌 74 圖4-25 濺鍍功率40W,基板溫度為180oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)奈米桿形貌 75 圖4-26 濺鍍功率40W,基板溫度為180oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)奈米桿形貌 76 圖4-27 濺鍍功率40W,基板溫度為200oC,氧化釕奈米桿選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)成長於SA(100)上奈米桿形貌;(e)(f)成長於SA(012)上奈米桿形貌 77 圖4-28 濺鍍功率40W,基板溫度為235oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)(e)氧化釕薄膜形貌 79 圖4-29 濺鍍功率40W,基板溫度為250oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 80 圖4-30 濺鍍功率40W,基板溫度為250oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)選擇性成長情形;(b)氧化釕薄膜形貌 81 圖4-31 濺鍍功率60W,基板溫度為200oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)選擇性成長情形;(b)非成長區內成長情形;(c)(d)奈米桿形貌 83 圖4-32 濺鍍功率60W,基板溫度為235oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)(e)奈米桿形貌;(f)奈米桿截面圖 84 圖4-33 濺鍍功率60W,基板溫度為235oC,氧化釕奈米桿於SA(012)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)奈米桿形貌 85 圖4-34 濺鍍功率60W,基板溫度為250oC,氧化釕奈米桿於SA(100)上選擇性成長FE-SEM電鏡圖:(a)(b)選擇性成長情形;(c)(d)氧化釕薄膜形貌 86 圖4-35 藉由反應性濺鍍成長二氧化釕奈米桿可能的成長機制 89 表目錄 表3-1 矽膜濺鍍條件 33 表3-2 二氧化釕成長條件 35 表4-1 濺鍍矽網印於SA(100)及SA(012)基板其基板溫度和濺鍍功率對選擇性成長的影響 88

1. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard, ”Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B, 53, (1997) 373-380.
2. L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B, 13, (1976) 2433-2450.
3. W. D. Ryden and A. W. Lawson, C. C. Sartain, ”Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, 1 (1970) 1494-1500.
4. E. Kolawa, F. C. T. So, E. T-S. Pan and M.-A.Nicolt, ”Reactive sputtering of RuO2 films ”, Thin Solid Films, 173 (1989) 217-224.
5. T. S. Kalkur and Y. C. Lu, ”Characteristics of rapidly thermally annealed RuO2 films on SiO2”, Thin Solid Films, 205 (1991) 266-269.
6. M. Takeuchi, K. Miwada and H. Nagasaka, ”Electrical properties of sputtered RuO2 films ”, Appl. Surf. Sci., 11/12 (1982) 298-307.
7. F. Mayadas and M. Shatzkes, ”Electrical - Resistivity Model for Polycrystalline Films : the Case of Arbitrary Reflection at External Surfaces”, Phys. Rev. B, 15 (1970) 1382-1389.
8. S. Y. Mar, J. S. Liang, C.Y. Sun, Y. S. Huang, "Grain boundary Scattering in Ruthenium dioxide thin film", Thin Solid Films, 238 (1994) 158-162.
9. G. DarioShow, T. FrancoShow, T. Sergio, "RUTHENIUM DIOXIDE: A NEW ELECTRODE MATERIAL - 1. BEHAVIOUR IN ACID SOLUTIONS OF INERT ELECTROLYTES", Journal of Applied Electrochemistry 4 (1) (1974) 57-67.
10. G. DarioShow, T. FrancoShow, T. Sergio, "RUTHENIUM DIOXIDE: A NEW ELECTRODE MATERIAL - 2. NON-STOICHIOMETRY AND ENERGETICS OF ELECTRODE REACTIONS IN ACID SOLUTIONS", Journal of Applied Electrochemistry 5 (3) (1975) 203-214.
11. S. Trasatti and W. E. O'Grady, "Properties and Application of RuO2-based electrodes", Adv. Electrochem. Eng., 12 (1981) 177-183.
12. S. Trasatti, "Electrocatalysis: understanding the success of DSA", Electrochimica Acta, 45 (2000) 2377-2385.
13. M. Blouin and D. Guay, “Activation of Ruthenium Oxide, Iridium Oxide, and Mixed RuxIr1-x Oxide Electrodes During Cathodic Polarization and Hydrogen Evolution”, J. Electrochem. Soc., 144 (1997) 573-581.
14. A. Cornell, and D. Simonsson, “Ruthenium Dioxide as Cathode Material for Hydrogen Evolution in Hydroxide and Chlorate Solutions”, J. Electrochem. Soc., 140 (1993) 3123-3129.
15. T. C. Wen and C. C. Hsu, “ Hydrogen and Oxygen Evolutions on Ru-Ir Binary Oxides”, J. Electrochem. Soc., Vol.139 (1992) 2158-2164.
16. J. C. F. Boodts and S. Trasatti, “Hydrogen Evolution on Iridium Oxide Cathodes”, J. Appl. Electrochem., 19 (1989) 255-262.
17. E. R. Kotz and S. Stucki, “Ruthenium Dioxide as a Hydrogen- Evolving Cathode”, J. Appl. Electrochem., 17 (1987) 1190-1197.
18. A. Nidola and R. Schira, “Poisoning Mechanisms and Structural Analyses on Metallic Contaminated Cathode Catalysts in Chlor-Alkali Membrane Cell Technology”, J. Electrochem. Soc., 133 (1986) 1653-1656.
19. S. L. Kuo and N. L. Wu, ”Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide”, Electrochemical and Solid-State Lett., 6 (2003) A85-A87.
20. P. K. Khanna, S. K. Bhatnagar, and M. L. Sisodia, “Inter-diffusion Phenomena and Electrical Conduction in Thick-Film Segmented-resistor Structure”, J. Phys. D: Appl. Phys. 21 (1988) 1796-1800.
21. M. Prudenziati, B. Morten, F. Cilion, F. Cilloni and G. Ruffi, “Very High Strain Sensitivity in Thick-film Resistor: Real and False Super Gauge Factor“, Sensors and Actuators, 19 (1989) 401-414.
22. S. Ferro and A. de Battisti, “Electrochemistry of the aqueous europium(III)/europium(II) redox couple at conductive diamond electrodes”, J. Electroanalytical Chemistry, 533 (2002) 177-180.
23. A. T. Kuhn, C. J. Mortimer, “Kinetic of Chlorine Evolution and Reduction on Titanium-Supported Metal Oxides Especially RuO2 and IrO2”, J. Electrochem. Soc., 120 (1973) 231-236.
24. T. Y. Kim, D. Kim, C. W. Chung, “Effects of Oxide Electrode on PbZrxTi1-xO3 Thin Films Prepared by Metallorganic Chemical Vapor Deposition”, Jpn. J. Appl. Phys., 36 (1997) 6494-6499.
25. G. R. Bai, I. F. Tsu, A. Wang, C. M. Foster, C. E. Murray, V. P. Dravid, “In Situ Growth of Highly Oriented Pb(Zr0.5Ti0.5)O3 Thin Films by Low-Temperature Metal-Organic Chemical Vapor Deposition”, Appl. Phys. Lett., 72 (1998) 1572-1574.
26. Q. X. Jia, W. A. Anderson, ”Stable RuO2 Thin Film Resistors”, Materials Research Society Symposia Proceedings, (1990) 533-552.
27. J. Soudee, G. Chardin, Y. Giraudgeraud, P. Pari and M. Chapellier, “Properties of NTD Number-23 Ge Sensor and RuO2 Films as Thermal Sensors for Bolometers“, J. of Low Temp. Phy., 93 (1993) 319-326.
28. A. J. Mcevoy, and W. Gissler, “A Ruthernium Dioxide- Semiconductor Schottky Barrier Photovoltaic Device”, J. Appl. Phys., 53 (1982) 1251-1252.
29. Q. X. Jia, Z. Q. Shi, K. L. Jiao and W. A. Anderson, “Reactively Sputtered RuO2 Thin Film Resistor With Near Zero Temperature Coefficient of Resistance”, Thin solid Films, 196 (1991) 29-34.
30. E. Kolawa, F. C. T. So, E. T-S. Pan and M-A. Nicolt, ”Reactively Sputtered RuO2 Diffusion Barriers”, Appl. Phys. Lett., 50 (1987) 854-855.
31. S. Iijima, “Helical of Microtubules of Graphitic Carbon”, Nature, 354 (1991) 56-61.
32. J. J. Wu and S. C. Liu, “Catalyst-free growth and characterization of ZnO nanorods”, J. Phys. Chem. B, 106 (2002) 9546.
33. Siddhartha K. Pradhan, Philip J. Reucroft, Fuqian Yang, Alan Dozier “Growth of TiO2 nanorods by metalorganic chemical vapor deposition”, Journal of Crystal Growth, 256, (2003) 83-88.
34. Tomoko Kasuga, Masayoshi Hiramatsu, Akihiko Hoson, Toru Sekino, Koichi Niihara, “Formation of Titanium Oxide Nanotube”, Langmuir, 14, (1998) 3160-3163.
35. P. Yang, C. M. Lieber, “Nanorod-superconductor composites: A pathyway to materials with high critical current densities”, Science, 273, (1996) 1836-1840.
36. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, H. Terrones, “SiC-SiOx heterojunctions in nanowires”, J. Mater. Chem., 9 (1999) 3173-3178.
37. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., 303 (1999) 311-314.
38. J. Hwang, B. Min, J. S. Lee, K. Keem, K. Cho, M. Y. Sung, M. S. Lee, and S. kim, “Al2O3 Nanotubes Fabrication by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers”, Adv. Mater., 16, (2004) 422-425.
39. Z. Yuan, H. Huang, and S. Fan, “Regular Alumina Nanopillar Arrays”, Adv. Mater., 14 (2002) 303-306.
40. Chi-Chi Shan,+ Dah-Shyang Tsai, Ying-Sheng Huang, Sie-Hong Jian, Chia-Liang Cheng, “Pt-Ir-IrO2NT thin-wall electrocatalysts derived from IrO2 nanotubes and their catalytic activities in methanol oxidation”, Chem. Mater. 19 (2007) 424-431.
41. Yuan-Fu Ke, Dah-Shyang Tsai and Ying-Sheng Huang, “Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates”, J. Mater. Chem., 15 (2005) 2122–2127.
42. Chih-Sung Hsieh, Dah-Shyang Tsai, Reui-San Chen, Ying-Sheng Huang “Preparation of ruthenium dioxide nanorods and their field emission characteristics” Appl. Phys. Lett., 85 (2004) 3860-3862.
43. T.W. Chaoa, C.J. Liu, A.H. Hsieh, H.M. Chang, Y.S. Huang, D.S. Tsai, “Quartz crystal microbalance sensor based on nanostructured IrO2”, Sensors and Actuators B 122 (2007) 95–100.
44. Alexandru Korotcov, Ying-Sheng Huang, Tsung-Ying Tsai, Dah-Shyang Tsai and Kwong-Kau Tiong, “Effect of length, spacing and morphology of vertically aligned RuO2 nanostructures on field-emission properties”, Nanotechnology 17 (2006) 3149–3153.
45. Gates, B., Mayers, B., Cattle, B., Xia, Y., “Synthesis and characterization of uniform nanowires of trigonal selenium”, Advanced Functional Materials, 12 (3) (2002) 219-227.
46. Gates, B., Yin, Y., Xia, Y., “A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm”, Journal of the American Chemical Society, 122 (50) (2000) 12582-12583.
47. Martin, C.R., “Template Synthesis of Electronically Conductive Polymer Nanostructures”, Accounts of Chemical Research, 28 (2), (1995) 61-66.
48. Wagner, R.S., Ellis, W.C., “VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH”, Appl. Phys. Lett., 4, (1964) 89.
49. Wu, Y., Yang, P., “Direct observation of vapor-liquid-solid nanowire growth” Journal of the American Chemical Society, 123 (13) (2001) 3165-3166.
50. S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, Y.W. Chung, “Semiconductor Nanowires from Oxides”, J. Mater. Res.,14, (1999) 4503-4507.
51. Lu, Y., Yin, Y., Li, Z.-Y., Xia, Y. “Synthesis and Self-Assembly of Au@SiO Core-Shell Colloids”, Nano Letters, 2 (7) (2002) 785-788.
52. X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang L. D. Zhang, ”Synthesis and Photoluminescence of Single-Crystalline In2O3 Nanowires”, J. Mater. Chem., 12, 5 (2002) 1603-1605.
53. X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng and L. D. Zhang, “Large-Scale Synthesis of In2O3 Nanowires“, Appl. Phys. A., 74, 3 (2002) 437-439.
54. J. P. Hirth, “Some comments on heterogeneous nucleation from the vapor phase”, J. Cryst. Growth, 17 (1972) 63-69.
55. V. J. Halpern, J. Appl. Phys., Vol.18, pp.163 (1967).
56. B. Lewis, “Migration and capture processes in heterogeneous nucleation and growth”, Surf. Sci., 21 (1970) 273-288,.
57. B. Lewis, “Migration and capture processes in heterogeneous nucleation and growth : II. Comparison with experiment”, Surf. Sci., 21, (1970) 289-306.
58. J. O. Carlsson, Crit. Rev. Solid State Mat. Sci., 16 (1991) 161.
59. X.M. Shena,b, G. Fenga, B.S. Zhanga, L.H. Duana, Y.T. Wanga, H. Yang, “Selective area growth of GaN on GaAs(001) substrates by metalorganic vapor-phase epitaxy”, Journal of Crystal Growth, 252 (2003) 9–13.
60. Shaoming Huang, Liming Dai, Albert W. H. Mau, “Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films”, J. Phys. Chem. B 103 (1999) 4223-4227.
61. Xueping Xua G. R. Brandes “A method for fabricating large-area, patterned, carbon nanotube field emitters”, Appl. Phys. Lett., 74, 17 (1999) 2549-2551.
62. Z. J. Zhang, B. Q. Wei, G. Ramanath, P. M. Ajayan, “Substrate-site selective growth of aligned carbon nanotubes”, Appl. Phys. Lett., 77, 23 (2000) 3764-3766.
63. Lingbo Zhu , Jianwen Xu , Yonghao Xiu , Yangyang Sun Dennis W.Hess , C.P. Wong, “Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays”, Carbon 44 (2006) 253–258.
64. Shoushan Fan, Michael G. Chapline, Nathan R. Franklin Thomas W. Tombler, Alan M. Cassell, Hongjie Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties”, Science 283 (1999) 512-514.
65. Jung Inn Sohn, Seonghoon Lee, Yoon-Ho Song, Sung-Yool Choi, Kyoung-Ik Cho, Kee-Soo Nam, “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays”, Appl. Phys. Lett., 78, 7 (2001) 901-903.
66. V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl, “Patterned growth of individual and multiple vertically aligned carbon nanofibers”, Appl. Phys. Lett., 76, 24, (2000) 3555-3557.
67. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, D. Pribat, “Uniform patterned growth of carbon nanotubes without surface carbon”, Appl. Phys. Lett., 79, 10, (2001) 1534-1536.
68. C. H. Liang L. C. Chena, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, “Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates”, Appl. Phys. Lett., 81, 1 (2002) 22-24.
69. Poole, P.J., Lefebvre, J., Fraser, J., “Spatially controlled, nanoparticle-free growth of InP nanowires”, Appl. Phys. Lett., 83, 10 (2003) 2055-2057.
70. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography” Appl. Phys. Lett., 76, 13 (2000) 1689-1691.
71. Yongsheng Zhang, Ke Yua, Shixi Ouyang, Ziqiang Zhu, “Patterned growth and field emission of ZnO nanowires”, Materials Letters 60 (2006) 522–526.
72. Lifeng Dong, Jun Jiao, David W. Tuggle, Jeremy M. Petty, Stephen A. Elliff, Michael Coulter, “ZnO nanowires formed on tungsten substrates and their electron field emission properties”, Appl. Phys. Lett., 82, 7 (2003) 1096-1098.
73. Hong Jin Fan, Woo Lee, Roland Scholz, Armin Dadgar, Alois Krost, Kornelius Nielsch Margit Zacharias, “Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach”, Nanotechnology 16 (2005) 913–917.
74. Xudong Wang, Christopher J. Summers, Zhong Lin Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays” Nano Lett., 4, 3 (2004) 423-426.
75. Peidong Yang, Haoguan Yan, Samuel Mao, Richard Russo, Justin Johnson, Richard Saykally, Nathan Morris, Johnny Pham, Rongrui He, Heon-Jin Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties” Adv. Funct. Mater., 12, 5, (2002) 323-331.
76. Michael H. Huang, Yiying Wu, Henning Feick, Ngan Tran, Eicke Weber, Peidong Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport” Adv. Mater. 13, 2 (2001) 113-116.
77. Yong-Jin Kim, Chul-Ho Lee, Young Joon Hong, Gyu-Chul Yi, Sung Soo Kim and Hyeonsik Cheong, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method” Appl. Phys. Lett. 89, (2006) 163128.
78. Sang-Woo Kim, Teruhisa Kotani, Masaya Ueda, Shizuo Fujita, Shigeo Fujita, “Selective formation of ZnO nanodots on nanopatterned substratesby metalorganic chemical vapor deposition”, Appl. Phys. Lett., 83, 17 (2003) 3593-3595.
79. Alexandru Korotcov, Hung-Pin Hsu, Ying-Sheng Huang, Dah-Shyang Tsai, Kwong-Kau Tiong, “Growth and Characterization of Well-Aligned RuO2 Nanocrystalson Oxide Substrates via Reactive Sputtering”, Crystal Growth & Design, 6, 11 (2006) 2501-2506.

QR CODE