簡易檢索 / 詳目顯示

研究生: 劉怡伶
Yi-Ling Liu
論文名稱: 二氧化鈦奈米柱銳鈦礦與金紅石結構之光電導效率比較
The Comparison of Photoconductivities for Anatase and Rutile TiO2 Nanorods
指導教授: 黃鶯聲
Ying-Sheng Huang
陳瑞山
Ruei-San Chen
口試委員: 趙良君
Liang -Chiun Chao 
李奎毅
Kuei-Yi Lee 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 二氧化鈦奈米柱歸一化增益尺寸效應光電導效率光電導增益
外文關鍵詞: titanium dioxide, nanorod, normalized gain, size effective, photoconduction efficiency, photoconductive gain
相關次數: 點閱:347下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition, MOCVD)成長之銳鈦礦(anatase)與金紅石(rutile)結構二氧化鈦(titanium dioxide; TiO2)奈米柱(nanorods)之光電導(photoconduction)效率及其物理機制。從環境變化光電導實驗發現其銳鈦礦與金紅石結構二氧化鈦奈米柱結構都具有共通的氧敏化光電導機制(oxygen-sensitized photoconduction mechanism)。在光功率相依的光電流反應實驗中,藉由計算代表材料本質光電導效率的歸一化增益(normalized gain),發現銳鈦礦結構之歸一化增益高於金紅石結構約一個數量級,其歸一化增益在光強度0.016 W/m2下最高可達1.75×10-4 m2/V。進一步利用時間解析之光電導量測所獲得之載子活期,發現造成銳鈦礦結構二氧化鈦奈米柱具有較佳的光電導效率之原因並非來自於載子活期(lifetime)的差異,主要是由較高的遷移率(mobility)所造成。


    We comparatively investigated the photoconduction (PC) efficiency and its physical mechanism of the anatase and rutile titanium dioxide (TiO2) nanorods with single-crystalline quality grown by cold-wall metal-organic chemical vapor deposition (MOCVD). The anatase TiO2 nanorods revealing similar oxygen-sensitized PC mechanism as the rutile ones has been confirmed by the environment-dependent PC measurement. The normalized gain which has the physical meaning of intrinsic PC efficiency has been defined and discussed for the as-grown TiO2 nanorods. It is found that the anatase TiO2 nanorods exhibit higher normalized gain for near one order of magnitude than the rutile phase. The optimal normalized gain of the anatase nanorods can reach 1.75×10-4 m2/V at the light intensity of 0.016W/m2. By the time-resolved PC measurement, the physical origin leading to the superior PC efficiency in anatase TiO2 nanorods in comparison to the rutile phase is proposed to be the probably higher electron mobility rather than carrier lifetime.

    中文摘要I AbstractII 目錄III 圖目錄VII 表目錄X 第一章 緒論1 1.1 研究動機1 1.2 二氧化鈦介紹4 第二章 實驗方法與步驟9 2.1 樣品製備9 2.1.1 實驗藥品及規格9 2.1.2 清洗基板之藥品9 2.2 有機金屬化學氣相沉積(Metal-Organic Vapor Deposition)11 2.2.1 有機金屬化學氣相沉積(MOCVD)設備11 2.2.2垂直成長二氧化鈦奈米柱沉積步驟12 2.3 特性分析方法14 2.3.1 X-ray 繞射儀(XRD)14 2.3.2拉曼散射儀(Raman scattering19 2.3.3場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope)23 2.3.4 穿透式電子顯微鏡 (Transmission Electron Microscope)26 2.3.5 原子力顯微鏡(Atomic Force Microscope System)28 2.3.6 場發射雙束型聚焦離子束顯微鏡(Dual Beam Focus ion beam)30 2.4 單根二氧化鈦奈米柱元件製作32 2.4.1 元件基板製作32 2.4.2 奈米柱分散33 2.4.3 奈米柱電極製作33 2.5 奈米柱元件之暗電導特性研究(dark conductivities in nanorods )36 2.5.1 電流對電壓曲線量測(current - voltage(IV)measurement)36 2.6 奈米柱元件之光電導特性研究(photoconductivities in nanorods)37 2.6.1環境變化光電導量測(environment-dependent photocurrent measurement)37 2.6.2 功率相依之光電導量測(power-dependent photocurrent measurement)37 第三章 結果與討論38 3.1垂直成長二氧化鈦奈米柱成長與結構特性分析38 3.1.1 銳鈦礦(Anatase)結構二氧化鈦於SA(100)基板之特性分析38 3.1.2 金紅石(Rutile)結構二氧化鈦於SA(100)基板之特性分析46 3.2 暗電導特性之分析54 3.2.1 電導率計算54 3.3 光電導特性之分析58 3.3.1 環境變化光電導量測58 3.3.2 光電導效率量測62 第四章 結論77 參考文獻78

    [1]A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem., vol. 100, pp. 13226 (1996).
    [2]H. Takikawa, T. Matsui,T. Sakakibara, A. Bendavid and P. J. Martin, “Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition,” Thin Soild Film, vol. 348, pp. 145-151 (1999).
    [3]K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films,” Thin Soild Film, vol. 109, pp. 169-178 (1983).
    [4]H. J. Frenck, “Deposition of TiO2 thin film by plasma enhanced decomposition of tetraiopropya titanate,” Thin Soild Film, vol. 201, pp. 327-335 (1991).
    [5]H. Al-Dmour and D. M. Taylor, “Revisiting the origin of open circuit voltage in nanocrystalline- TiO2/polymer heterojunction solar cells,” Appl. Phys. Lett, vol. 94, 223309, (3pp) (2009).
    [6]I. Haeldermans K. Vandewa, W. D. Gadisa, A. Gadisa, J. D'Haen, B. Van, M. K. Manca, J. V and J. Mullens, “Ground-state charge-transfer complex formation in hybrid poly(3-hexyl thiophene):titanium
    dioxide solar cells,” Appl. Phys. Lett., vol. 93, 223302, (3pp) (2008).
    [7]K. P. Kim, S. J. Lee, D. H. Kim, D. K. Hwang and Y. W. Heo, “Dye-sensitized solar cells based on trench structured TiO2 nanotubes in Ti substrate,” Curr Appl Phys, vol. 13, pp 395-398 (2010).
    [8]K. Kamata, “Rapid formation of TiO2 films by a conventional CVD method,” J. Mater. Sci. Lett., vol. 9, pp. 316-319 (1990).
    [9]S. Yoshida, “Antireflection coatings on metals for selective solar absorbers,” Thin Soild Film ,vol. 56, pp. 321 (1979).
    [10]G. K. Mor, K. Shankar, M. Paulose, O. K.Varghese and C. A. Grimes,
    “Enhanced photocleavage of water using titania nanotube arrays,” Nano Lett., vol. 5, pp. 191-195 (2005).
    [11]J. H. Park, S. Kim and A. J. Bard, “Novel carbon-doped TiO2 nanotube
    arrays with high aspect ratios for efficient solar water splitting,” Nano Lett., vol. 6, pp. 24-28 (2006).
    [12]G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, “Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting,” Nano Lett., vol. 11, pp. 3026-3033 (2011).
    [13]R. Levinson, P. Berdahl and H. Akbari, “Solar spectral optical properties of pigments-part Π:survey of common colorants”, vol. 89, pp. 351 (2005).
    [14]C. A. Linkous, G. J. Carter, D. B. Locuson, A. J. Ouellette, D. K, Slattery and L. A. Smitha, “Photocatalytic inhibition of algae growth uaing TiO2 and WO3 and cocatalyst modifications,” Environ. Sci. Technol., vol. 34, pp. 44754 (2000).
    [15]R. I . Bickley, T. Gonzalea-Carreno, J. S. Lees, L. Palmisano and R. J. D. Tilley,“A structural investigation of titanium dioxide photocatalysts,” J. Solid State Chem., vol. 92, pp. 178 (1991).
    [16]H. Lin, S. Kumon, H. Kozuka and T. Yoko, “Electrical properties of sol-gel-derived transparent titania films doped with ruthenium and tantalum,” Thin Soild Film, Vol. 315, pp. 266 (1998).
    [17]T. Watanabe, S. Fuukayaama, M. Miyauchi, A. Fujishima and K. Hashimoto, “Photocatalystic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass,” J. Sol-Gel Sci. Technol., vol. 19, pp. 71 (2000).
    [18]H. K. Jang, S.W. Whangbo, Y. K. Choi, G. H. Kim and T. K. Kim, “Titanium oxide film on Si(100) deposited by E-Beam evaporation,” J. Vac. Sci. Technol. A, vol. 18, pp. 2932 (2000).
    [19]B. Karunagaran, R. T. R. Kumar, D. Mangalaraj, S. K. Narayandass and G. M. Rao, “Influence of thermal annealing on the composition and structural parameters of DC magnetron sputtered titanium dioxide thin films,” Cryst. Res. Technol. ,vol. 37, pp.1285 (2002).
    [20]S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, “Rutil type TiO2 formation by ion beam dynamic mixing,” J. Vac. Sci. Technol., A, vol. 10, pp. 3253 (1992).
    [21]R. J. Puddephatt, “Reactivity and mechanism in the chemical vapor deposition of late transition metals,” Polyhedron, vol. 13, pp. 1233-1243 (1994).
    [22]F. Maury,“Trends in precursor selection for MOCVD,” Chem. Vap. Deposition, vol. 2, pp. 113-116 (1996).
    [23]C. Fàbrega, F. Hernàndez-Ramírez, J. D. Prades, R. Jiménez-Díaz, T. Andreu and J. R. Morante, “On the photoconduction properties of low resistivity TiO2 nanotubes,” Nanotechnology, vol. 21, pp. 445703 (2010).
    [24]R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang and Y. S. Huang, “Photoconduction Properties in Single-Crystalline Titanium Dioxide Nanorods with Ultrahigh Normalized Gain,” J. Phys. Chem. C, vol. 116, pp. 4267-4272 (2012).
    [25]R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang and Y. S. Huang, “Ultrahigh efficient single-crystalline TiO2 nanorod photoconductors,” Appl. Phys. Lett. vol. 100, 123108, (4pp) (2012).
    [26]R. S. Chen, C. A. Chen, W. C. Wang, H. Y. Tsai and Y. S. Huang,“Transport properties in single-crystalline rutile TiO2 nanorods,” Appl. Phys. Lett., vol. 99, 222107, (3pp) (2011).
    [27]A. Labouriau and W. L. Earl, “Titanium solid-state NMR in anatase, brookite and rutile,” Chem. Phys. Lett., vol. 270, pp. 178-284 (1997).
    [28]K. Okimura, “Low temperature growth of rutile TiO2 film in modified RF magnetron sputtering,” Surf. Coat. Technol., vol. 135, pp.186-190 (2001).
    [29]D. R. Burgess, T. J. Anderson, P. A. Morris Hotsenpiller and J. L. Hohman, “Solid precursor MOCVD of heteroepitaxial rutile phase TiO2,” J. Cryst. Growth, vol. 166, pp. 763-768 (1996).
    [30]T. Sekiya, S. Ohta, S. Kamei, M. Hanakawa and S. Kurita, “Raman spectroscopy and phase transition of anatase TiO2 under high pressure,” J. Phys. Chem. Solids., vol. 62, pp. 717-721 (2001).
    [31]N. Hossks, T. Sekiya and S. Kurita, “Excitonic state in anatase TiO2 single crystal,” J. Lumin., vol. 72-74, pp. 874-875 (1997).
    [32]V. Swamy and L. S. Dubrovinsky, “Bulk modulus of anatase,” J. Phys. Chem. Solids., vol. 62, pp. 673-675 (2001).
    [33]K. P. Beh, F. K. Yam, C. W. Chin, S. S. Tneh and Z. Hassan, “The growth of Ш-V nitrides heterostructure on Si substrate by plasma-assisted molecular beam epitaxy,” J. Alloys ompd., vol. 506, pp. 343-346 (2012).
    [34]張冠英, “X光能譜分析儀”.
    [35]C. Y. Nam, D. Tham and J. E. Fischer, “Disorder effects in focused ion beam deposited Pt contacts on GaN nanowires,” Nano Lett., vol. 5, pp. 2029-2033 (2005).
    [36]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X.Y. Bao,Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009 (2007).
    [37]C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen and L. C. Chen, “High photocurrent gain in SnO2 nanowire,” Appl. Phys. Lett., vol. 93, 112115, (3pp) (2008).
    [38]R. S. Chen, H. Y. Chen, C. Y . Lu, K. H. Chen, C. P . Chen and L. C. Chen, “Ultrahigh photocurrent gain in m -axial GaN nanowire,” Appl. Phys. Lett., vol. 91, pp. 223106, (3pp) (2007).
    [39]P. Bhattacharya, “Semiconductor optoelectronic devices,” Prentice Hall, New Jersey, Chap. 8, pp. 346-351 (1997).
    [40]M .Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433 (1996).
    [41]J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth and S. Mathur, “Toward a systematic understanding of photodetectors based on individual metal oxide nanowire,” J. Phys. Chem. C, vol. 112, pp. 14639 (2008).
    [42]U. Dlrike, “The surface science of titanium dioxide,” Surf. Sci. Rep., vol. 48. pp. 53-229 (2003).
    [43]Q. M. Wang, S. H. Kwon, K. N. Hui, D. I. Kim, K. S. Hui and K. H. Kim,“Synthesis and properties of crystalline TiO2 films deposited by a
    HIPIMS technique,” Vacuum, vol. 98. pp. 90-95 (2013)
    [44]G. K. Boschloo, A. Goossens and J. Schoonman, “Photoelecfrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition,” J. Electrochem. Soc., vol. 144. pp. 1311-1315 (1997)
    [45]R. S. Chen, W. C. Wang, M. L. Lu, Y. F. Chen, H. C. Lin, K. H. Chen
    and L. C. Chene,“Anomalous quantum efficiency for photoconduction
    and its power dependence in metal oxide semiconductor nanowires,”
    Nanoscale, vol. 10, pp. 1039 (2013)

    QR CODE