簡易檢索 / 詳目顯示

研究生: 蔡睿澤
Ruei-Tze Tsai
論文名稱: 不同形貌次微米TiO₂基複合材料觸媒結構探討
Photocatalyst Properties of Submicron TiO₂- Based Composites with Different Morphologies
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
陳啟亮
Chi-Liang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 二氧化鈦光觸媒
外文關鍵詞: Titanium dioxide, photocatalyst
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先以史托博法(Stöber method)製備的非晶SiO₂球當作模板,其直徑約133 nm;再將TiO2披覆在表面,形成SiO₂@TiO₂核殼結構複合物。所得到的複合物與2.5 M之氫氧化鈉(NaOH)溶液反應不同時間,改變其形貌。SEM結果發現,隨反應時間由3分鐘增長為25分鐘,複合物的形貌由含有矽球之蛋黃殼結構,轉變為空心球,最後成為碗狀結構。BET結果顯示碗狀結構的樣品,其孔洞直徑及表面積分別為73.5 nm及192 m2g−1。不同形貌的樣品於500°C下進行退火後,結構分析顯示,隨反應時間增長,樣品的缺陷含量增加,能隙值下降,光降解效能提高。其中,反應25分鐘的樣品(碗狀結構)在紫外光照射下,可於12分鐘內將溶液中的甲基橙完全降解。將退火溫度提升至800°C後,所有樣品的形貌不變,但結晶性改善,光降解效率也進一步提高。碗狀結構之樣品能夠在紫外光照射下,於8分鐘內將溶液中的甲基橙完全降解。


    In this study, amorphous SiO2 spheres prepared by the Stöber method were used as templates with a diameter of about 133 nm; then TiO2 was coated on the surface to form a SiO2@TiO2 core-shell composite. The composite morphology was adjusted by tuning the reaction time with a 2.5 M sodium hydroxide (NaOH) solution. With increasing the reaction time from 3 to 25 minutes, the composite morphology changed from egg yolk-shell structure containing silicon spheres to hollow spheres and finally into a bowl-shaped structure. The BET results show that the bowl-shaped sample has a pore diameter and surface area of 73.5 nm and 192 m2g−1, respectively. After the samples with different morphologies were annealed at 500°C, the structural analysis showed that with the increase in the reaction time, the defect content of the samples increased, the energy gap value decreased, and the photodegradation efficiency increased. Among them, the sample reacted for 25 minutes (bowl-shaped structure) can completely degrade the methyl orange in the solution within 12 minutes under ultraviolet light irradiation. After increasing the annealing temperature to 800°C, the morphology of all samples remained unchanged, but the crystallinity was improved, and the photodegradation efficiency was further enhanced. The bowl-shaped sample can completely degrade the methyl orange in the solution within 8 minutes under ultraviolet light irradiation.

    中文 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧與理論介紹 3 2.1 光觸媒 3 2.1.1 光觸媒原理介紹 3 2.1.2 光觸媒反應機制[8] 4 2.2 材料性質與結構 5 2.2.1 物理性質及晶體結構 5 2.3 提升TIO2光觸媒效果之方法 9 2.3.1 摻雜 9 2.3.1.1 鹼金屬摻雜 10 2.3.1.2 貴金屬摻雜之改質 12 2.3.1.3 過渡金屬與非金屬摻雜之改質 13 2.3.2 TIO2尺寸 14 2.3.3 形貌 16 2.3.3.1 TIO2奈米顆粒(零維)[28] 16 2.3.3.2 TIO2奈米管 (一維) [28] 18 2.3.3.3 TIO2奈米片(二維)[28] 19 2.3.3.4 TIO2立體球形結構(三維)[28] 20 2.3.4 三維球形結構不同樣貌之比較 21 2.3.4.1 中空球結構 21 2.3.4.2 核殼結構 23 2.3.4.3 碗狀結構 24 2.4 表面積對TIO2光降解之影響 27 第三章 實驗方法 30 3.1 實驗樣品之製備流程及使用藥品 30 3.1.1 小尺寸二氧化矽球之製備 31 3.1.2 製備二氧化矽之藥品 32 3.1.3 以二氧化鈦包覆二氧化矽核殼結構球之製備 33 3.1.4 製備二氧化鈦包覆二氧化矽之藥品 34 3.1.5 腐蝕及酸處理流程 35 3.1.6 腐蝕及酸處理之使用藥品 39 3.1.7 退火處理 39 3.2 實驗儀器介紹與性能分析 40 3.2.1 X光繞射分析 40 3.2.2 掃描式電子顯微鏡 42 3.2.3 穿透式電子顯微鏡 44 3.2.4 紫外光/可見光吸收光譜儀 46 3.2.5 拉曼光譜儀 47 3.3.6 BET 孔徑粒徑分析儀 50 3.3.7 光觸媒性質 53 第四章 結果與討論 54 4.1 不同形貌之SIO2@TIO2複合結構之製備與性能探討 55 4.1.1 小尺寸之SIO2矽球 55 4.1.2 SIO2@TIO2之製備 56 4.1.3 不同形貌之SIO2@TIO2複合結構之製備 60 4.1.3.1 SEM分析 60 4.2 SIO2@TIO2酸處理之結果討論 63 4.2.1 SEM及EDS分析 63 4.5 SIO2@TIO2 -500C退火處理之結果討論 66 4.5.1 XRD分析 66 4.5.2 SEM分析 68 4.5.3 RAMAN分析 70 4.5.4 UV-VIS分析 71 4.5.5 光降解分析 72 4.5.5.1 經過500度退火後樣品之短時間光降解分析 74 4.5.6 BET分析 76 4.5.7 結構對光性能之影響討論 77 4.6 不同形貌上對光觸媒之分析 80 4.6.1 XRD分析 81 4.6.2 SEM分析 82 4.6.3 TEM分析 84 4.6.3.1 經過500C退火後之TEM分析 84 4.6.3.2 經過800C退火後之TEM分析 86 4.6.4 RAMAN分析 88 4.6.5 UV-VIS分析 89 4.6.6 光降解分析 90 4.6.6.1 紫外光 90 4.6.6.2 可見光 92 4.6.7 不同結構之結晶度及缺陷綜合討論 93 第五章 結論 94 參考文獻 95

    [1] Kato, K.; Masuo, F. Kogyo Kagaku Zashi. (1964), 67, 1136
    [2] Akira, Fujishima, and Honda Kenichi. "Electrochemical photolysis of water at a semiconductor electrode." Nature 238.5358 (1972): 37-38.
    [3] Heltina, D., Mastura, D. I., Amri, A., & Sembiring, M. P. (2023). Comparison of synthesis methods on TiO2-graphene composites for photodegradation of compound waste. Materials Today: Proceedings.
    [4] Tsai, M. C., Lee, J. Y., Chen, P. C., Chang, Y. W., Chang, Y. C., Yang, M. H., Chiu, H. T., Lin, I. N., Lee, R. K., & Lee, C. Y. (2014). Effects of size and shell thickness of TiO2 hierarchical hollow spheres on photocatalytic behavior: An experimental and theoretical study. Applied Catalysis B: Environmental, 147, 499-507.
    [5] Liu, S., Yu, J., & Jaroniec, M. (2010). Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. Journal of the American Chemical Society, 132(34), 11914-11916.
    [6] Kanjana, N., Maiaugree, W., Poolcharuansin, P., & Laokul, P. (2020). Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. Journal of Materials Science & Technology, 48, 105-113.
    [7] Song, C., Yu, W., Zhao, B., Zhang, H., Tang, C., Sun, K., Wu, X., Dong, L., Chen, Y. (2009). Efficient fabrication and photocatalytic properties of TiO2 hollow spheres. Catalysis Communications, 10(5), 650-654.
    [8] Eddy, D. R., Permana, M. D., Sakti, L. K., Sheha, G. A. N., Hidayat, S., Takei, T., Kumada, N., Rahayu, I. (2023). Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2(B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials, 13(4), 704.
    [9] Lee, S. Y., & Park, S. J. (2013). TiO2 photocatalyst for water treatment applications. Journal of industrial and engineering chemistry, 19(6), 1761-1769.
    [10] Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., Cheng, H. M., Lu, G. Q. (2008). Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 453(7195), 638-641.
    [11] Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., & Li, C. (2014). Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chemical reviews, 114(19), 9987-10043.
    [12] Hanaor, D. A., & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. Journal of Materials science, 46, 855-874.
    [13] Nowotny, M. K., Sheppard, L. R., Bak, T., & Nowotny, J. (2008). Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. The Journal of Physical Chemistry C, 112(14), 5275-5300.
    [14] Yang, G., Yan, Z., Xiao, T., & Yang, B. (2013). Low-temperature synthesis of alkalis doped TiO2 photocatalysts and their photocatalytic performance for degradation of methyl orange. Journal of Alloys and Compounds, 580, 15-22.
    [15] Zhang, N., Liu, S., Fu, X., & Xu, Y. J. (2011). Synthesis of M@TiO2 (M= Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. The Journal of Physical Chemistry C, 115(18), 9136-9145.
    [16] Naseri, N., Yousefi, M., & Moshfegh, A. Z. (2011). A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation. Solar Energy, 85(9), 1972-1978.
    [17] Choi, W., Termin, A., & Hoffmann, M. R. (2002). The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98(51), 13669-13679.
    [18] Begum, N. S., Farveez Ahmed, H. M., & Hussain, O. M. (2008). Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique. Bulletin of materials science, 31, 741-745.
    [19] Xiao, Q., Zhang, J., Xiao, C., Si, Z., & Tan, X. (2008). Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Solar energy, 82(8), 706-713.
    [20] Khan, S. U., Al-Shahry, M., & Ingler Jr, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2. science, 297(5590), 2243-2245.
    [21] Asahi, R. Y. O. J. I., Morikawa, T. A. K. E. S. H. I., Ohwaki, T., Aoki, K., & Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 293(5528), 269-271.
    [22] Gole, J. L., Stout, J. D., Burda, C., Lou, Y., & Chen, X. (2004). Highly efficient formation of visible light tunable TiO2-x N x photocatalysts and their transformation at the nanoscale. The journal of physical chemistry B, 108(4), 1230-1240.
    [23] Bhosale, R. R., Pujari, S. R., Muley, G. G., Patil, S. H., Patil, K. R., Shaikh, M. F., & Gambhire, A. B. (2014). Solar photocatalytic degradation of methylene blue using doped TiO2 nanoparticles. Solar Energy, 103, 473-479.
    [24] Zhou, X., Shao, C., Li, X., Wang, X., Guo, X., & Liu, Y. (2018). Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. Journal of hazardous materials, 344, 113-122.
    [25] Hu, X., Hu, X., Tang, C., Wen, S., Wu, X., Long, J., Yang, X., Wang, H., Zhou, L. (2017). Mechanisms underlying degradation pathways of microcystin-LR with doped TiO2 photocatalysis. Chemical engineering journal, 330, 355-371.
    [26] Liu, S., Jaffrezic, N., & Guillard, C. (2008). Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO2 catalysts. Applied Surface Science, 255(5), 2704-2709.
    [27] Toyoda, M., Nanbu, Y., Nakazawa, Y., Hirano, M., & Inagaki, M. (2004). Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water. Applied Catalysis B: Environmental, 49(4), 227-232.
    [28] Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of photochemistry and photobiology C: Photochemistry Reviews, 13(3), 169-189.
    [29] Yang, H., Zhang, K., Shi, R., Li, X., Dong, X., & Yu, Y. (2006). Sol–gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions. Journal of Alloys and Compounds, 413(1-2), 302-306.
    [30] Almquist, C. B., & Biswas, P. (2002). Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis, 212(2), 145-156.
    [31] Xu, X., Fang, X., Zhai, T., Zeng, H., Liu, B., Hu, X., Bando, Y., Golberg, D. (2011). Tube‐in‐Tube TiO2 Nanotubes with Porous Walls: Fabrication, Formation Mechanism, and Photocatalytic Properties. Small, 7(4), 445-449.
    [32] Shichi, T., & Katsumata, K. I. (2010). Development of photocatalytic self-cleaning glasses utilizing metal oxide nanosheets. J. Surf. Finish. Soc. Jpn, 61, 30-35.
    [33] Shibata, T., Sakai, N., Fukuda, K., Ebina, Y., & Sasaki, T. (2007). Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Physical Chemistry Chemical Physics, 9(19), 2413-2420.
    [34] Han, X., Kuang, Q., Jin, M., Xie, Z., & Zheng, L. (2009). Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 131(9), 3152-3153.
    [35] Kim, C., Choi, M., & Jang, J. (2010). Nitrogen-doped SiO2/TiO2 core/shell nanoparticles as highly efficient visible light photocatalyst. Catalysis Communications, 11(5), 378-382.
    [36] Bahadur, N. M., Chowdhury, F., Obaidullah, M., Hossain, M. S., Rashid, R., Akter, Y., Furusawa, T., Sato, M., Suzuki, N. (2019). Ultrasonic-assisted synthesis, characterization, and photocatalytic application of SiO2@TiO2 core-shell nanocomposite particles. Journal of Nanomaterials, 2019, 1-11.
    [37] Zhong, Z., Yin, Y., Gates, B., & Xia, Y. (2000). Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Advanced Materials, 12(3), 206-209.
    [38] Hsu, C. H., Huang, W. H., Lin, C. J., Huang, C. H., Chen, Y. C., Kumar, K., Lin, Y.H., Dong, C.L., Wu, M.K., Hwang, B.J., Su, W.N., Chen, S. Y., Chen, C. L. (2023). Description of Photodegradation Mechanisms and Structural Characteristics in Carbon@Titania Yolk–Shell Nanostructures by XAS. Small, 19(2), 2203881.
    [39] Wang, H., Wu, Z., & Liu, Y. (2009). A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres. The Journal of Physical Chemistry C, 113(30), 13317-13324.
    [40] Yuan, J., Zhang, X., Li, H., Wang, K., Gao, S., Yin, Z., Yu, H., Zhu, X., Xiong, Z., Xie, Y. (2015). TiO2/SnO2 double-shelled hollow spheres-highly efficient photocatalyst for the degradation of rhodamine B. Catalysis Communications, 60, 129-133.
    [41] Yu, S., Liu, B., Wang, Q., Gao, Y., Shi, Y., Feng, X., An, X., Liu, L., Zhang, J. (2014). Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis. ACS applied materials & interfaces, 6(13), 10283-10295.
    [42] Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K., Bandow, S., Iijima, S. (2008). Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir, 24(2), 547-550.
    [43] Lu, J., Zhang, P., Li, A., Su, F., Wang, T., Liu, Y., & Gong, J. (2013). Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chemical Communications, 49(52), 5817-5819.
    [44] Gao, P., Li, A., Sun, D. D., & Ng, W. J. (2014). Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. Journal of Hazardous materials, 279, 96-104.
    [45] Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69.
    [46] Joo, J. B., Dahl, M., Li, N., Zaera, F., & Yin, Y. (2013). Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 6(7), 2082-2092.
    [47] Joo, J. B., Lee, I., Dahl, M., Moon, G. D., Zaera, F., & Yin, Y. (2013). Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Advanced Functional Materials, 23(34), 4246-4254.
    [48] Ye, M., Lu, Z., Hu, Y., Zhang, Q., & Yin, Y. (2013). Mesoporous titanate-based cation exchanger for efficient removal of metal cations. Journal of Materials Chemistry A, 1(16), 5097-5104.
    [49] KUMAR, A. A. (2017). DEVELOPMENT OF POROUS TITANOSILICATE-BASED HYBRID NANOCOMPOSITES FOR PHOTOCATALYTIC APPLICATIONS UNDER UV AND SOLAR LIGHT IRRADIATION (Doctoral dissertation, NATIONAL INSTITUTE OF TECHNOLOGY WARANGAL).
    [50] Nanakoudis, A. (2019). SEM: types of electrons and the information they provide. Available Source: https://www. thermofisher. com/blog/microscopy/sem-typeselectrons-and-the-information-they-provide.
    [51] 陳力俊等著,材料電子顯微鏡學,行政院國科會精密儀器發展中心,p.1~20、p.49~50、p.251~285 (1990).
    [52] Makuła, P., Pacia, M., & Macyk, W. (2018). How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. The journal of physical chemistry letters, 9(23), 6814-6817.
    [53] Rostron, P., Gaber, S., & Gaber, D. (2016). Raman spectroscopy, review. laser, 21, 24.
    [54] 李多加, 二氧化鈰中空球結構之巨軌道順磁特性探討, 國立台灣科技大學材料科學與工程系研究所, 碩士論文, 2021
    [55] Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.
    [56] Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781-2791.
    [57] Varshney, S., Nigam, A., Pawar, S. J., & Mishra, N. (2022). Structural, optical, cytotoxic, and anti-microbial properties of amorphous silica nanoparticles synthesised via hybrid method for biomedical applications. Materials Technology, 37(10), 1504-1515.
    [58] Wang, X., Yao, Y., Gao, W., & Zhan, Z. (2021). High-rate and high conductivity mesoporous TiO2 nano hollow spheres: Synergetic effect of structure and oxygen vacancies. Ceramics International, 47(10), 13572-13581.
    [59] Javed, S., Islam, M., & Mujahid, M. (2019). Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method. Ceramics International, 45(2), 2676-2679.
    [60] Avinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., Suresh, S., Lamani, A. R. (2016, May). Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial. In AIP conference proceedings (Vol. 1728, No. 1). AIP Publishing.
    [61] Ullah, S., Ferreira-Neto, E. P., Pasa, A. A., Alcântara, C. C., Acuña, J. J., Bilmes, S. A., Martínez-Ricci, M. L., Landers, R., Fermino, T. Z., Rodrigues-Filho, U. P. (2015). Enhanced photocatalytic properties of core@shell SiO2@TiO2 nanoparticles. Applied Catalysis B: Environmental, 179, 333-343.

    無法下載圖示 全文公開日期 2033/08/22 (校內網路)
    全文公開日期 2073/08/22 (校外網路)
    全文公開日期 2073/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE