簡易檢索 / 詳目顯示

研究生: 劉書丞
SHU-CHENG LIU
論文名稱: 製備金屬與高分子複合粉末暨應用於高功率半導體雷射積層製造
Design and Fabrication of Composite Material of Metal and Polymer and Its Application on High-Power Semiconductor Laser Additive Manufacturing System
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 林上智
Shang-Chih Lin
邱耀弘
Yau-Hung Chiou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 83
中文關鍵詞: 金屬積層製造複合材料半導體雷射生坯
外文關鍵詞: metal additive manufacturing, diode laser, composite material, green part
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 摘要 II ABSTRACT III 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 1. 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究流程 2 1.4 論文架構 3 2. 文獻回顧 4 2.1 積層製造 4 2.2金屬的積層製造技術 5 2.2.1 指向能量沉積(Direct Energy Deposition, DED) 6 2.2.2 粉床熔融(Powder Bed Fusion, PBF) 7 2.2.3 黏著劑噴射(Binder Jetting, BJ) 9 2.2.4 其他金屬積層製造技術 10 2.3 高速積層製造 11 2.4 材料背景 15 2.4.1 316L不鏽鋼 16 2.4.2高分子黏結劑 17 2.4.3液相燒結與複合粉體 17 3. 實驗方法 20 3.1 使用材料 20 3.1.1不鏽鋼粉末 20 3.1.2高分子材料 20 3.2 複合材料製作設備與流程 21 3.2.1混鍊機 21 3.2.2篩粉機 23 3.2.3 複合材料製備 24 3.3 材料驗證 28 3.3.1 金屬粉末粒徑分析 28 3.3.2 密度測試方法 29 3.4 成形實驗設備 32 3.4.1 Sinterit Lisa SLS 3D列印機 32 4. 實驗結果與討論 39 4.1 材料性質分析 39 4.1.1 電子顯微形貌SEM 40 4.1.2 差示掃描量熱法DSC 42 4.2 成形參數實驗 43 4.2.1粒徑對鋪粉之影響 46 4.2.3雷射能量密度之影響 56 4.2.4鋪粉層厚之影響 59 4.2.2預熱溫度之影響 61 4.3 3D物件列印測試 66 4.4結果討論 68 5. 結論與未來研究方向 70 5.1 結論 70 5.2未來研究方向 70 參考文獻 71

    [1] S.Pratheesh Kumar, S.Elangovan, R.Mohanraj, andJ. R.Ramakrishna, “Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes,” Materials Today: Proceedings, Mar.2021, doi: 10.1016/j.matpr.2021.02.567.
    [2] “ASTM F42/ISO TC 261 Develops Additive Manufacturing Standards.” https://www.astm.org/COMMIT/F42_AMStandardsStructureAndPrimer.pdf.
    [3] I.Gibson, D.Rosen, B.Stucker, andM.Khorasani, Additive Manufacturing Technologies. Springer International Publishing, 2021.
    [4] A.Nazir andJ. Y.Jeng, “A high-speed additive manufacturing approach for achieving high printing speed and accuracy,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 234, no. 14, pp. 2741–2749, Jul.2020, doi: 10.1177/0954406219861664.
    [5] J. P. M.Pragana, R. F. V.Sampaio, I. M. F.Bragança, C. M. A.Silva, andP. A. F.Martins, “Hybrid metal additive manufacturing: A state–of–the-art review,” Advances in Industrial and Manufacturing Engineering, vol. 2, p. 100032, May2021, doi: 10.1016/j.aime.2021.100032.
    [6] D.Herzog, V.Seyda, E.Wycisk, andC.Emmelmann, “Additive manufacturing of metals,” Acta Materialia, vol. 117, pp. 371–392, Sep.2016, doi: 10.1016/j.actamat.2016.07.019.
    [7] “ISO/ASTM 52900-2015 Standard Terminology for Additive Manufacturing - General Principles.” https://www.doc88.com/p-4157427153761.html?r=1.
    [8] D.Svetlizky et al., “Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications,” Materials Today, Jun.2021, doi: 10.1016/j.mattod.2021.03.020.
    [9] “3D列印:積層製造技術與應用,” 鄭正元, 江卓培, 林宗翰, 林榮信, 蘇威年, 汪家昌, 蔡明忠, 賴維祥, 鄭逸琳, 洪基彬 , 2017.
    [10] I.Gibson, D.Rosen, andB.Stucker, “Powder Bed Fusion Processes,” in Additive Manufacturing Technologies, Springer New York, 2015, pp. 107–145.
    [11] D.Grossin et al., “A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites,” Open Ceramics, vol. 5, p. 100073, Mar.2021, doi: 10.1016/j.oceram.2021.100073.
    [12] A.Mostafaei et al., “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges,” Progress in Materials Science, vol. 119. Elsevier Ltd, p. 100707, Jun.01, 2021, doi: 10.1016/j.pmatsci.2020.100707.
    [13] I.Gibson, D.Rosen, andB.Stucker, “Binder Jetting,” in Additive Manufacturing Technologies, Springer New York, 2015, pp. 205–218.
    [14] A. I.Nurhudan, S.Supriadi, Y.Whulanza, andA. S.Saragih, “Additive manufacturing of metallic based on extrusion process: A review,” Journal of Manufacturing Processes, vol. 66. Elsevier Ltd, pp. 228–237, Jun.01, 2021, doi: 10.1016/j.jmapro.2021.04.018.
    [15] “Matkforged - Metal X System.” https://markforged.com/3d-printers/metal-x (accessed Jun. 19, 2021).
    [16] M.Simonelli et al., “Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting,” Additive Manufacturing, vol. 30, p. 100930, Dec.2019, doi: 10.1016/j.addma.2019.100930.
    [17] K.Mukai, S.Kitayama, Y.Kawajiri, andS.Maruo, “Micromolding for three-dimensional metal microstructures using stereolithography of photopolymerized resin,” Microelectronic Engineering, vol. 86, no. 4–6, pp. 1169–1172, Apr.2009, doi: 10.1016/j.mee.2008.12.008.
    [18] “Discover the CLIP technology in 3D printing.” https://www.sculpteo.com/blog/2016/03/01/introducing-the-carbon-3d-printer-and-clip-technology
    [19] A.Alomarah, D.Ruan, S.Masood, andZ.Gao, “Compressive properties of a novel additively manufactured 3D auxetic structure,” Smart Materials and Structures, vol. 28, no. 8, Jul.2019, doi: 10.1088/1361-665X/ab0dd6.
    [20] “ExOne | ACT Whitepaper.” https://www.exone.com/en-US/ExOne-Triple-ACT-Whitepaper.
    [21] “What is Single Pass JettingTM? | Desktop Metal.” https://www.desktopmetal.com/resources/what-is-single-pass-jetting.
    [22] “EOS LaserProFusion for Tool-Free Injection Molding | EOS.” https://www.eos.info/en/innovations/3d-printing-of-the-future/laserpro-fusion#video_63332
    [23] 黃彥迪, “頁寬式壓電噴頭模組應用於高速粉床熔融3D列印機台的開發與研究,” 國立台灣科技大學, 2019. .
    [24] 李侯慶, “多雷射模組3D列印機台設計開發與製程參數分析,” 國立臺灣科技大學, 2020. .
    [25] A.Hemmasian Ettefagh, S.Guo, andJ.Raush, “Corrosion performance of additively manufactured stainless steel parts: A review,” Additive Manufacturing, vol. 37. Elsevier B.V., p. 101689, Jan.01, 2021, doi: 10.1016/j.addma.2020.101689.
    [26] “MPIF 35-2007_結構件材料標準.” http://www.doc88.com/p-4753808802948.html.
    [27] 王奕軒, “高功率半導體雷射金屬粉末燒結積層製造研究,” 國立台灣科技大學, 2020. .
    [28] “Liquid Phase Sintering - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/engineering/liquid-phase-sintering.
    [29] S.Kumar, “Selective Laser Sintering/Melting,” in Comprehensive Materials Processing, vol. 10, Elsevier Ltd, 2014, pp. 93–134.
    [30] S.M.Nazemosadat, E.Foroozmehr, and M.Badrossamay, “Preparation of alumina/polystyrene core-shell composite powder via phase inversion process for indirect selective laser sintering applications,” Ceramics International, vol. 44, no. 1, pp. 596–604, Jan.2018, doi: 10.1016/j.ceramint.2017.09.218.

    無法下載圖示 全文公開日期 2026/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE