簡易檢索 / 詳目顯示

研究生: 林夢衍
Meng-Yan Lin
論文名稱: 高效率的探勘最大高頻周期共同位置樣式
Efficient Mining of Maximal Frequent Periodic Co-location Patterns
指導教授: 戴碧如
Bi-Ru Dai
口試委員: 蔡曉萍
Hsiao-Ping Tsai
黃仁暐
Jen-Wei Huang
吳怡樂
Yi-Leh Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 60
中文關鍵詞: 資料探勘周期樣式共同位置樣式時空資料探勘
外文關鍵詞: Data mining, periodic pattern, co-location pattern, spatio-temporal data mining
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周期共同位置樣式的探勘,可以發掘出在地理資訊上同存現象的周期性,並且它也是時空資料探勘上新穎和重要的問題,而隨著資訊科技的發展,時空的資料量也隨之快速的大量成長,然而目前並沒有技術是專門針對探勘周期共同位置樣式所設計,而使用周期樣式和共同位置樣式的技術會產生多餘的共同位置樣式和花費多餘的計算時間,多餘的共同位置樣式是不必要的資訊,且會導致過高的計算成本,因此我們定義了簡潔的最大高頻周期共同位置樣式(concise MFPCP)為了消除多餘的共同位置樣式,並且我們提出了multiple autocorrelation和MFPCP miner演算法,multiple autocorrelation演算法用於偵測可能存在的周期,並且保證找出完整的周期,而MFPCP miner演算法則更有效率的找出最大高頻周期共同位置樣式,實驗結果顯示我們所提出的方法能保證周期的完整性和提高其效率。


    Periodic co-location pattern mining is a novel and important branch of the spatio-temporal data mining. With the evolving of computation and communication technology, the sizes of spatio-temporal datasets are growth extremely. However, no existing technique is particularly designed for mining periodic co-location patterns. In addition, applying the techniques of periodic pattern mining and co-location pattern mining to generate periodic co-location patterns directly will produce redundant patterns and result in higher computation cost. Therefore, we define the concise maximal frequent periodic co-location pattern (concise MFPCP) for pruning the redundant co-location pattern. Moreover, we propose a multiple autocorrelation algorithm to detect the periodicity, and a MFPCP miner algorithm to discover concise MFPCPs. The multiple autocorrelation algorithm guarantees that all possible periods will be found out. The MFPCP miner algorithm uses the property of MFPCP for discovering concise MFPCP more efficiently. Experimental results show that the proposed periodicity detection method has high accuracy without losing performance, and the proposed MFPCP mining method discovers MFPCP with high efficiency.

    Table of Contents List of Tables List of Figures Chapter 1 Introduction 1.1 Background 1.2 Motivation and Contribution 1.3 Thesis Organization Chapter 2 Related Works 2.1 Co-location Pattern Mining 2.2 Periodic Pattern Mining 2.3 Spatio-Temporal Data Mining Chapter 3 Basic Concepts and Problem Definition 3.1 Co-location Patterns and Participation Index 3.2 Periodic Patterns and Upper Bound of Frequency Count 3.3 Modeling Concise Maximal Frequent Periodic Co-location Patterns Chapter 4 Mining Concise Maximal Frequent Periodic Co-location Patterns 4.1 Multiple Autocorrelation Algorithm 4.2 MFPCP Miner Algorithm Chapter 5 Experimental Evaluation 5.1 Evaluating Accuracy for Multiple Autocorrelation Algorithm 5.2 Evaluating Performance for Multiple Autocorrelation Algorithm 5.3 The Performance Evaluation of MFPCP Miner Algorithm Chapter 6 Conclusion and future work Reference

    1. M.F. Goodchild, “The fundamental laws of GIScience,” Keynote Address, Annual Assembly, University Consortium for GIScience, Monterey, CA, 2003.
    2. Shashi Shekhar, Pusheng Zhang, Yan Huang, and Ranga Raju Vatsavai, "Trends in Spatial Data Mining", as a book chapter to appear in "Data Mining: Next Generation Challenges and Future Directions", Hillol Kargupta and Anupam Joshi(editors), AAAI/MIT Press, 2003
    3. Baris Kazar, Shashi Shekhar, and David J. Lilja, "Parallel Formulation of Spatial Auto-Regression", Army High-Performance Computing Research Center (AHPCRC) Technical Report no. 2003-125, August 2003
    4. S. Shekhar, P. Schrater, R. Vatsavai, W. Wu, and S. Chawla, Spatial Contextual Classification and Prediction Models for Mining Geospatial Data , IEEE Transactions on Multimedia (special issue on Multimedia Dataabses) , 2002.
    5. Shashi Shekhar, Chang-Tien Lu, Pusheng Zhang, "A Unified Approach to Detecting Spatial Outliers" volume 7, issue 2, GeoInformatica, Kluwer Academic Publishers, 2003.
    6. Yan Huang, Shashi Shekhar, and Hui Xiong, Discovering Co-location Patterns from Spatial Datasets: A General Approach, Submitted to IEEE TKDE(under second round review)
    7. Yoo, J., Shekhar, S., Smith, J., Kumquat, J.: A partial join approach for mining co-location patterns. In: Proceedings of the 12th annual ACM international workshop on geographic information systems, pp. 241–249 (2004)
    8. Yoo, J., Shekhar, S.: A Joinless Approach for Mining Spatial Colocation Patterns. IEEE Transactions on Knowledge and Data Engineering 18(10), 1323–1337 (2006)
    9. Sheng, C., Hsu, W., Li Lee, M., Tung, A.: Discovering Spatial Interaction Patterns. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 95–109. Springer, Heidelberg (2008)
    10. Huang, Y., Pei, J., Xiong, H.: Mining Co-Location Patterns with Rare Events from Spatial Data Sets. GeoInformatica 10(3), 239–260 (2006)
    11. He, J., He, Q., Qian, F., Chen, Q.: Incremental Maintenance of Discovered Spatial Colocation Patterns. In: Proceedings of the 8th international conference on data mining workshop on spatial and spatio-temporal data mining, pp. 399–407 (2008)
    12. T. Koskela, M. Lehtokangas, J. Saarinem and K. Kaski (1996): “Time series prediction with multilayer perceptron, FIR, and Elman neural networks”, in Proceedings of World Congress on Neural Network, pp. 491–496.
    13. T.G. Dietterich and R.S. Michalski (1985): “Discovering patterns in sequences of events”, Artificial Intelligent, Vol.25, No. 2, pp.
    14. C.M. Antunes and A.L. Oliveira (2001) : “Temporal data mining: An overview”, in Proceedings of the KDD’01 Workshop on Temporal Data Mining, San Francisco, USA, pp. 1–13.
    15. V.S. Nalwa (1997): “Automatic on-line signature verification”, Proceedings of the IEEE 85, pp. 215–239.
    16. J. Yamato, J. Ohya and K. Ishii (1992): “Recognizing human action in time sequential images using Hidden Markov Model”, in Proceedings of 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’92), pp. 379–385.
    17. A. Kundu, Y. He and P. Bahl (1988): “Word recognition and word hypothesis generation for handwritten script: A Hidden Markov Model based approach”, in Proceedings of 1988 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’88), pp. 457–462.

    18. S. Laxman and P.S. Sastry (2006): “A survey of temporal data mining”, Vol. 31, pp. 173–198.
    19. T. W. Liao (2005): “Clustering of time series data - a survey”, Pattern Recognition Vol. 38, No.11, pp. 1857–1874.
    20. C. Goutte, P. Toft and E. Rostrup (1999): “On clustering fMRI time series”, Vol. 9, No.3, pp. 298–310.
    21. Celik, M., Shekhar, S., Rogers, J., Shine, J., Yoo, J.: Mixed-drove spatio-temporal co-occurrence pattern mining: A summary of results. In: Proceedings of the 6th international conference on data mining, pp. 119–128 (2006)
    22. Celik, M., Shekhar, S., Rogers, J., Shine, J.: Sustained Emerging Spatio-Temporal Co-occurrence Pattern Mining: A Summary of Results. In: Proceedings of the 18th IEEE international conference on tools with artificial intelligence, pp. 106–115 (2006)
    23. Celik, M., Shekhar, S., Rogers, J., Shine, J., Kang, J.: Mining At Most Top-K Mixed-drove Spatio-temporal Co-occurrence Patterns: A Summary of Results. In: Proceedings of the 23rd IEEE international conference on data engineering work-shop, pp. 565–574 (2007)
    24. Y. Huang, P. Zhang, “On the relationships between clustering and spatial co-location pattern mining,” In: Proc. of the 18th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 06), pp. 513--522, Washington, DC, 2006.
    25. H. Xiong, S. Shekhar, Y. Huang, V. Kumar, X. Ma, J.S. Yoo, “A framework for discovering co-location patterns in data sets with extended spatial objects,” In: Proc. of the Fourth SIAM Int. Conf. on Data Mining, SDM’04, pp. 1--12, Lake Buena Vista, FL, 2004.
    26. E. Keogh, J. Lin, and A. Fu, “HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence,” Proc. Fifth IEEE Int’l
    Conf. Data Mining, pp. 226-233, 2005.
    27. N. Kumar, N. Lolla, E. Keogh, S. Lonardi, C.A. Ratanamahatana, and L. Wei, “Time-Series Bitmaps: A Practical Visualization Tool for Working with Large Time Series Databases,” Proc. SIAM Int’l Conf. Data Mining, pp. 531-535, 2005.
    28. M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid, “Periodicity Detection in Time Series Databases,” IEEE Trans. Knowledge and Data Eng., vol. 17, no. 7, pp. 875-887, July 2005.
    29. M.G. Elfeky, W.G. Aref, and A.K. Elmagarmid, “WARP: Time Warping for Periodicity Detection,” Proc. Fifth IEEE Int’l Conf. Data Mining, Nov. 2005.
    30. J. Han, W. Gong, and Y. Yin, “Mining Segment-Wise Periodic Patterns in Time Related Databases,” Proc. ACM Int’l Conf. Knowledge Discovery and Data Mining, pp. 214-218, 1998.
    31. A. Weigend and N. Gershenfeld, Time Series Prediction: Forecasting the Future and Understanding the Past. Addison-Wesley, 1994.
    32. Y. Morimoto, “Mining frequent neighboring class sets in spatial databases,” In: Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 2001.
    33. Y. Huang, S. Shekhar and H. Xiong, “Discovering colocation patterns from spatial data sets: a general approach,” TKDE 16, vol. 12, 1472--1485, 2004.
    34. P. Mohan, S. Shekhar, J. A. Shine, J. P. Rogers, "Cascading spatio-temporal pattern discovery," IEEE Transactions on Knowledge and Data Engineering, 23 Jun. 2011. IEEE computer Society Digital Library. IEEE Computer Society.
    35. W. Ding, C.F. Eick, J. Wang and X. Yuan, “A framework for regional association rule mining in spatial datasets,” In: ICDM, pp. 851--856, Hong Kong, China , 2006.
    36. M. Celik, J.M. Kang and S. Shekhar, “Zonal co-location pattern discovery with dynamic parameters,” In: ICDM, pp. 433--438, Omaha, NE, 2007.
    37. H. Samet, “Foundations of multidimensional and metric data structures,” Morgan-Kaufmann, 2006.
    38. S. Ma and J. Hellerstein, “Mining Partially Periodic Event Patterns with Unknown Periods,” Proc. 17th IEEE Int’l Conf. Data Eng., Apr. 2001.
    39. J. Yang, W. Wang, and P. Yu, “InfoMiner+: Mining Partial Periodic Patterns with Gap Penalties,” Proc. Second IEEE Int’l Conf. Data Mining, Dec. 2002.
    40. C. Berberidis, W. Aref, M. Atallah, I. Vlahavas, and A. Elmagarmid, “Multiple and Partial Periodicity Mining in Time Series Databases,” Proc. European Conf. Artificial Intelligence, July 2002.
    41. Berberidis C, Vlahavas I P, Aref W G, Atallah M J, Elmagarmid A K 2002 On the discovery of weak periodicities in large time series. In Lecture notes in computer science, Proc. 6th Eur. Conf. on Principles of Data Mining and Knowledge Discovery, vol. 2431, pp 51–61
    42. M. Elfeky, W. Aref, and A. Elmagarmid, “Using Convolution to Mine Obscure Periodic Patterns in One Pass,” Proc. Ninth Int’l Conf. Extending Data Base Technology, Mar. 2004.
    43. V LACHOS , M., M EEK , C., V AGENA , Z., AND G UNOPULOS , D. 2004. Identifying similarities, periodicities, and bursts for online search queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, 131–142.
    44. M. Vlachos, P. S. Yu, and V. Castelli. On periodicity detection and structural periodic similarity. In SDM, 2005.
    45. S. Parthasarathy, S. Mehta, and S. Srinivasan, “Robust periodicity detection algorithms,” in Proceedings of the 15th ACM international conference on Information and knowledge management, CIKM ’06, (New York, NY, USA), pp. 874–875, ACM, 2006.
    46. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient Periodicity Mining in Time Series Databases Using Suffix Trees. IEEE Transactions on Knowledge and Data Engineering 99 (2010) (preprints)
    47. F. Rasheed and R. Alhajj, “Using Suffix Trees for Periodicity Detection in Time Series Databases,” Proc. IEEE Int’l Conf. Intelligent Systems, Sept. 2008.
    48. F. Rasheed and R. Alhajj, “STNR: A Suffix Tree Based Noise Resilient Algorithm for Periodicity Detection in Time Series Databases,” Applied Intelligence, vol. 32, no. 3, pp. 267-278, 2010.
    49. R. Agarwal and R. Srikant, “Fast algorithms for mining association rules,” In: Proc. 20th Int’l Conf. Very Large Data Bases , 1994.
    50. J. Vitter, “External Memory Algorithms and Data Structures: Dealing with Massive Data,” ACM Computing Surveys, vol. 33, no. 2, pp. 209-271, June 2001.
    51. M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identification of Similarities, Periodicities & Bursts for Online Search Queries. In Proc. of SIGMOD, 2004.
    52. F. Qian, Q. He, and J. He, “Mining Spread Patterns of Spatio-temporal Co-occurrences over Zones,” Proceedings of the international conference on computational science and applications, pp. 686–701, 2009.
    53. Qian, F., Yin, L., He, Q., He, J.: Mining spatio-temporal co-location patterns with weighted sliding window. In: Proceeding of IEEE International Conference on Intelligent Computing and Intelligent Systems, vol. 3, pp. 181–185 (2009)
    54. Y. Huang, L. Zhang, and P. Zhang, “A framework for mining sequential patterns from spatio-temporal event data sets,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 4, pp. 433–448, Apr. 2008.
    55. J. Rosswog and K. Ghose, “Efficiently detecting clusters of mobile objects in the presence of dense noise,” in: Proceedings of the 2010 ACM Symposium, 2010.
    56. Gudmundsson, J., van Kreveld, M. J., & Speckmann, B. (2004). Efficient detection of motion patterns in spatio-temporal data sets. In GIS, Washington, District of Columbia (pp. 250–257).
    57. P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable moving point objects. In GI-Science 2002, number 2478 in Lect. Notes in Computer Science, pages 132–144, Berlin, 2002. Springer.
    58. P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO – detecting relative motion patterns in geospatial lifelines. In Proc. 11th Int.
    59. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In Proceedings of 9th International Symposium on Spatial and Temporal Databases, pages 364–381. Springer, 2005.
    60. J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series Databases. In Proc. of 1999 Int. Conf. on Data Engineering, Sydney, Australia, March 1999.
    61. K. Gouda, M.J. Zaki, "Efficiently Mining Maximal Frequent Itemsets," proc. ICDM 2001.
    62. D. Burdick, M. Calimlim, J. Flannick, J. Gehrke, T. Yiu, "MAFIA: A Maximal Frequent Itemset Algorithm," Knowledge and Data Engineering, Nov. 2005, vol. 17.
    63. L. Wanga, L. Zhoua, J. Lub, J. Yipb, "An order-clique-based approach for mining maximal co-locations," Information Sciences, vol. 179, Issue 19, 9 September 2009, Pages 3370–3382
    64. Australian Antarctic Data Centre, http://data.aad.gov.au/

    無法下載圖示 全文公開日期 2017/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE