簡易檢索 / 詳目顯示

研究生: 童榆升
Yu-sheng Tung
論文名稱: 排風扇電動機驅動系統之研製
Development of Fan Motor Drives
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
none
林法正
none
劉傳聖
none
連國龍
Kuo-Lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 138
中文關鍵詞: 永磁式同步電動機功率因數校正
外文關鍵詞: permanent–magnet synchronous motor, power factor corrector
相關次數: 點閱:155下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本文旨在研製排風扇之驅動系統。單相交流電源經由交流-直流-交流功率轉換器,將市電轉換為可調變電壓及頻率之三相電源。本文採用成本低且控制簡單之全橋式半控型功因校正器輸出直流鏈電壓,不僅能改善電源電流諧波含量及提高功率因數,亦可穩定直流鏈電壓,使其可調變於220V~300V之範圍,而不受負載影響,再藉由三相變流器驅動永磁式同步電動機旋轉。三相變流器採用弦式脈波寬度調變完成轉速與電流閉迴路控制,並藉由三個霍爾效應感測元件估測出一連續電動機轉子磁極角位置以降低電動機電流諧波含量,減少抖動。排風扇系統於溫度較高時提高直流鏈電壓,使排風扇電動機有更大的轉速範圍,增加排風扇之排風量;溫度低時則降低排風扇電動機轉速及風扇之排風量,減少使用功率。
  排風扇之驅動系統以數位信號處理器TMS320F2808作為控制核心,其全橋式半控型功因校正器之電壓與電流閉迴路控制與三相變流器之轉速與電流閉迴路控制皆以軟體完成,減少硬體電路並提高可靠度。本系統輸入側電源電壓為單相交流110V,60 Hz,排風扇的轉速範圍為 至 。當排風扇轉速命令為 ,輸出功率為640W的條件下,實測結果顯示電源電流總諧波失真率為7.02%,電動機側之電流總諧波失真率為4.27%,整體的效率為82%。


  This thesis presents the development of fan motor drives. The system consists of rectifier, inverter and three-phase permanent–magnet synchronous motor, which can transfer the single-phase source power to three-phase source with varying-voltage and varying-frequency. Low cost and simple control of the single-phase semi-controlled full-bridge type power factor corrector is used to not only decrease harmonic current and improve power factor in the power supply, but also keep DC-link voltage stable under load variation. Three-phase inverter uses closed-loop control of speed and current by sinusoidal pulse-width modulation and rotor position estimation to reduce the motor current harmonics and jitter. For fan system under high temperature, DC-link voltage is raised to extend the speed range for increasing the fan exhaust. While at low temperature, the motor speed is decreased to reduce fan exhaust and power consumption accordingly.
  The 32-bit digital signal processor, TMS320F2808, is adopted to implement the control functions of the fan system. The control of the closed-loop rectifier voltage and current as well as the inverter control of motor speed and current are realized by software to reduce circuit components, and thereby improves reliability. An experimental system is implemented with input voltage of 110V, 60 Hz and motor speed range from 100rpm to 450rpm. Experimental results show that the total harmonic distortion of current is 7.02% on the supply side, while the total harmonic distortion of current is 4.27% on the load terminal. The system efficiency is 82%.

摘要I 英文摘要II 誌謝III 目錄IV 圖表索引VI 符號索引XIII 第一章 緒論1 1.1動機及目的1 1.2文獻探討1 1.3系統架構及規格4 1.4本文特色6 1.5本文大綱6 第二章 排風扇用之永磁式同步電動機的分析及控制7 2.1前言7 2.2永磁式同步電動機及其數學模式7 2.3排風扇用之永磁式同步電動機參數量測10 2.4三相變流器及排風扇電動機之控制策略20 2.4.1電流方波控制20 2.4.2弦式脈波寬度調變控制24 2.5角位置估測法29 2.6永磁式同步電動機控制規劃29 2.6.1電流方波控制30 2.6.2定磁通之弦式脈波寬度調變控制31 2.6.3霍爾效應感測元件之轉速及電流閉迴路控制32 2.6.4具角度估測之轉速及電流閉迴路控制33 2.7結語36 第三章 交流-直流功率轉換器的分析及控制37 3.1前言37 3.2交流-直流功率轉換器分析37 3.2.1未具功因校正之功率轉換器37 3.2.2具功因校正之功率轉換器38 3.3單相全橋式半控型功因校正器的分析及模式41 3.4單相全橋式半控型功因校正器之實體製作49 3.5節能措施及系統整合55 3.6結語57 第四章 實體製作及結果59 4.1前言59 4.2硬體電路59 4.2.1數位信號處理器介面電路59 4.2.2電流回授電路62 4.2.3交流電壓回授電路63 4.2.4直流電壓回授電路64 4.2.5閘極驅動電路65 4.2.6溫度回授電路68 4.3控制軟體規畫69 4.4實測結果71 第五章 結語及未來研究方向85 5.1結語85 5.2未來研究方向86 參考文獻87 附錄A 排風扇用之永磁式同步電動機結構與參數91 附錄B .LabView for NI PCI-625194 附錄C Matlab 交流-直流功率轉換器模擬程式102 作者簡介119

[1]A. Borisavljevic, E. Ho and T. Takahashi, “Fan Drive Starting into Naturally Rotating Load by Sinusoidal Sensorless Permanent Magnet Motor Control,” Power Electronics and Motion Control Conference, pp. 1190-1198, 2006.
[2]Y. Jang and M. M. Jovanovic, “A Comparative Study of Single-Switch Three-Phase High-Power-Factor Rectifiers,” IEEE Transactions on Industry Applications, vol. 34, no. 6, pp. 1327-1334, 1998.
[3]J. A. M. Bleijs, “Continuous Conduction Mode Operation of Three-Phase Diode Bridge Rectifier With Constant Load Voltage,” IEEE-PESC Conference Record, vol. 152, issue. 2, pp. 359-368, 2005.
[4]蘇長成,”風力發電系統之功率轉換器研製”,國立台灣科技大學電機工程技術研究所碩士論文,民國九十七年。
[5]J. Kikuchi and M. D. Manjrekar and T. A. Lipo, “Complementary Half Controlled Three Phase PWM Boost Rectifier for Multi-DC-Link Applications,” IEEE-APEC Conference Record, vol. 1, pp. 494-500, 2000.
[6]Z. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors. I. Open-Circuit Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 124-135, 1993.
[7]Z. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors. II. Armature-Reaction Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 136-142, 1993.
[8]Z. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors. III. Effect of Stator Slotting,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 143-151, 1993.
[9]Z. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Permanent Magnet Brushless DC Motors. IV. Magnetic Field on Load,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 152-158, 1993.
[10]鄭裕仁,”以數位信號處理器為基礎之微步進電動機驅動系統之研製”,國立台灣科技大學電機工程學系碩士學位論文,民國96年。
[11]Y. Y. Yzou, “DSP-base Dully Digital Control of a PWM DC-AC Converter for AC Voltage Regulation,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 139-144, 1995.
[12]V. Blasko, J. C. Moreira and T. A. Lipo, ”A New Field Oriented Controller Utilizing Spatial Position Measurement or Rotor Ring Current,” IEEE Power Electronics Specialists Conference, pp. 295-299, 1989.
[13]魏孝哲,“六臂型三相變流器之永磁式同步電動機驅動器之故障後控制策略”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
[14]Y. T. Jang and M. M. Jovanovi, ”A Bridgeless PFC Boost Rectifier With Optimized Magnetic Utilization,” IEEE Power Electronics, vol. 24, no. 1, pp. 85-93, January 2009.
[15]TMS320x280x System Control and Interrupts Reference Guide, Texas Instruments Co., 2006.
[16]TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Modul Reference Guide, Texas Instruments Co., 2007.
[17]TMS320x280x Analog-to-Digital Converter (ADC) Reference Guide, Texas Instruments Co., 2005.
[18]TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse (eQEP) Module Reference Guide, Texas Instruments Co., 2008.
[19]A. E. Fitzgerald, Jr. C. Kingsley, S. D Umans, “Electric Machinery,” McGraw Hill, 2003.
[20]林信宏,“電梯用永磁式同步電動機驅動器之研製”,國立台灣科技大學電機研究所碩士論文,民國九十五年。
[21]金德昌,“永磁式同步電動機之設計及其轉速控制系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。

[22]莊三峰,“高性能不斷電系統之研製”,國立台灣工業技術學院電機工程技術研究所碩士論文,民國八十三年。
[23]H. J. Cha, S. S. Kim, M. G. Kang, and Y. H. Chung, “Real-Time Digital Control of PWM Inverter with PI Compensator for Uninterruptible Power Supply,” IECON’90, vol. 2,pp. 1124-1128, 1990.
[24]H. V. D. Broeck, H. C. Skudelny and G. V. Stanke, “Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-149, 1998.
[25]J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor, J. E. Baggio, “Control Strategy of an Interleaved Boost Power Factor Correction Converter,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 137-142, 1999.
[26]Z. H. Jiang, X. D. Sun, L. P. Huang, “The Controller of High Frequency and High Dynamic Performance Dual-Boost PFC Module Based on DSP,” Proceedings of 29th Annual Conference of IEEE Industrial Electronics Society, vol. 1, pp. 249-254, 2003.
[27]A. F. Souza and I. Barbi, “High Power Factor Rectifier with Reduced Conduction and Commutation Losses,” International Telecommunication Energy Conf. (INTELEC) Proc., pp. 5, 1999.
[28]B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC Implementation Using One Cycle Control Technique,” IEEE Applied Power Electronics (APEC) Conf. Proc., pp. 812-817, 2005.
[29]G. Liu, W. Wang, J. Liu, D. Xu, “Research on Conventional PFC and Bridgeless PFC in Air Conditioner” IEEE Power Electronics and Motion Control Conference, pp. 666-669, 2009.
[30]朱億樵,“風力發電用之三臂及六臂半控型交流-直流功率轉換器之研製”,國立台灣科技大學電機研究所碩士論文,民國九十七年。
[31]M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “New Single-Phase PLL Structure Based on Second Order Generalized Integrator,” IEEE Power Electronics Specialists Conference, pp. 1-6, 2006.
[32]M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Improved PLL Structures for Single-phase Grid Inverter,” Proceedings of International Coference on Power Electronics and Intelligent Control for Energy Conservation, pp. 16-19, 2005.
[33]王嘉紋,“具浮點運算數位信號處理器之三相交流-直流功率轉換器研製”,國立台灣科技大學電機研究所碩士論文,民國九十九年。
[34]林功偉,“以數位信號處理器為基礎之電池儲能系統研製”,國立台灣科技大學電機研究所碩士論文,民國九十八年。
[35]Intersil,“AD590 Datasheet”,www.intersil.com,2002。
[36]蕭鈞毓,“六相及雙三相繞組永磁式同步電機之分析及設計”,國立台灣科技大學電機研究所碩士論文,民國九十六年。

QR CODE