簡易檢索 / 詳目顯示

研究生: 彭建榮
Chien-Jung Peng
論文名稱: 在無線環境下結合錯誤更正碼與重傳機制之最佳化視訊串流
Joint FEC-ARQ Optimized Video Streaming in Wireless Communications
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 盧晃瑩
Hoang-Yang Lu
洪賢昇
Hsien-Sen Hung
賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 速率失真最佳化拉格朗日速率失真函數錯誤更正碼重傳機制最大權重匹配
外文關鍵詞: video streaming, Lagrange rate distortion function, FEC, ARQ, Maximum
相關次數: 點閱:202下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於與日俱增的網路傳送與視訊傳輸需求, 視訊串流系統已經成為相當
    重要的一環。在視訊串流系統中, 我們的主要考量是, 如何將視訊串流用戶端
    的收訊品質最佳化, 並且能夠符合頻寬要求與封包須於解碼期限之前到達等
    限制。
    近期在視訊串流上的一個重要的突破是速率-失真最佳化技術的出現, 它
    在計算速率-失真函數時, 同時考慮封包的重要性以及傳輸通道的通道情況。
    由於無線傳輸日益普及, 本論文嘗試由目前有線傳輸上的考量擴展至傳送與
    接收端具有多路徑通道(或是多根天線) 的無線通訊系統中。
    本論文將提出兩種同時將多路徑、錯誤更正碼與重傳機制列入考量的方
    法考量的方法。在第一個方法中, 我們考慮一個聯合多路徑-錯誤更正碼-重傳
    機制的速率-失真函數, 並且利用簡單有效率的動態規劃方法找出最佳解。
    在第二個方法中, 我們先在媒體存取控制層(Media Access Control, MAC)
    結合錯誤更正碼與重傳機制的方法,然後將相關的封包資訊傳送至實體層(Physical
    layer)。接著在實體層,我們利用最大權重匹配(MaximumWeight Matching,
    MWM ) 找出最佳的通道分配, 進而獲得更好的效能表現。根據實驗結果顯示,
    本文中所提出了兩個新方法, 相較於前人提出的方法均有較佳的效能展現。


    With the growing demand for video transmission and network transporters,
    the video streaming has become increasingly important. In video streaming, the
    main concern is to optimize the video quality at the streaming client under the
    contraints of the prescribed transmission rate and the delivery before the decoded
    deadline.
    One of the recent advances in video streaming is the emergence of the ratedistortion
    optimizatized streaming technology which took into account the importance
    of the packets and the knowledge about the channel through the use of the
    rate-distortion cost function. With the widespread of wireless transmission, this
    thesis attempts to extends the current technologies to wireless scenarios which
    have multipath channel or multiple antennas at the transmitters/receivers.
    Two approach are considered in this thesis. For the first approach, we consider
    a new Lagarange rate-distortion function which jointly takes the multipaths,
    FEC(Forward Error Correction) and ARQ(Auto Repeat reQuest) into consideration,
    we then succinctly solve it by the dynamic programming .
    For the second approach, we first consider a joint FEC-ARQ scheme in the
    MAC(Media Access Control) layer, and then transmit some related information
    to the PHY(Physical layer) layer. In the PHY layer, MWM(Maximum Weight
    Matching) is then used to carry out the optimum channel allocation to render
    superior performance. Conducted simulation show that both approaches provide
    superior performance compared with perious works in various scenarios.

    目錄 第一章緒論1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 內容章節概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章背景回顧7 2.1 速率可調性視訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 空間多級性. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 時間多級性. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 品質多級性. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 錯誤控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 速率-失真最佳化之封包排程. . . . . . . . . . . . . . . . . . . . 12 2.3.1 應用層視訊源的描述. . . . . . . . . . . . . . . . . . . . . 14 2.3.2 實體層通道的描述. . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 封包遺失與延遲機率. . . . . . . . . . . . . . . . . . . . . 18 2.3.4 單一封包之速率-失真最佳化. . . . . . . . . . . . . . . . . 19 2.4 遞迴式敏感度調整演算法. . . . . . . . . . . . . . . . . . . . . . . 23 2.5 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第三章無線多路徑環境下的速率-失真最佳化排程26 3.1 相關背景的回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 路徑多樣性架構下的速率失真最佳化排程. . . . . . . . . . . . . 28 3.2.1 封包遺失機率. . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 單一封包的錯誤與代價函數. . . . . . . . . . . . . . . . . 33 3.2.3 速率-失真最佳化排程. . . . . . . . . . . . . . . . . . . . . 37 3.3 路徑多樣性架構下的速率-失真最佳化排程與最大權重匹配. . . 39 3.3.1 最大權重匹配. . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 最大權重匹配使用最大積與最小和可靠性傳播. . . . . . 41 3.4 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 第四章實驗規劃與分析46 4.1 實驗規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1 H.264 編解碼器. . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.2 資料連結層的多媒體串流. . . . . . . . . . . . . . . . . . . 47 4.1.3 實體層的無線通道. . . . . . . . . . . . . . . . . . . . . . . 47 4.2 電腦模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 結語. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 第五章結論及未來展望60 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 參考文獻62

    參考文獻
    [1] Darwin Streaming Server, http://developer.apple.com/opensource/server, retrieved
    May 28th. 2008.
    [2] Helix DNA, http://helixcommunity.org, retrieved May 28th. 2008.
    [3] Window Media, http://www.microsoft.com/windows/windowsmedia, retrieved
    May 28th. 2008.
    [4] P. A. Chou and Z. Miao, “Rate-Distortion optimized streaming of packetized
    media,” IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 390-404, Apr.
    2006.
    [5] J. Chakareski and P. A. Chou, “Application layer error-correction coding for
    rate distortion optimized streaming to wireless clients,” IEEE Transactions
    on Communications, vol. 52, no. 10, Oct. 2004.
    [6] J. Chakareski and B. Girod, “Rate-distortion optimized packet scheduling
    and routing for media streaming with path diversity” Proceeding of the Data
    Compression Conference, pp. 203-212, Mar. 2003.
    [7] A. M. Tourapis, JM software Joint Video Team(JVT), DOC. JVT-x072, Jul.
    5th. 2007.
    [8] M. Elaoud and P. Ramanathan, “Adaptive use of error correcting codes for
    real-time communication in wireless networks,” IEEE INFOCOM, pp. 548-
    555, 1998.
    [9] X. Liu and W. Badawy, “A novel Adaptive error control scheme for real-time
    wireless video streaming,” IEEE Wireless Communication and Networking
    Conference, pp. 460-463, Aug. 2003.
    [10] I. E. G. Richardson, H.264 and MPEG-4 video compression, Wiley, 2004.
    [11] T. Stockhammer, M. M. Hannuksela and T. Wiegand, “H.264/AVC in wireless
    enviroments,” IEEE Transaction on Circuits and System for Video Technology,
    vol. 3, no. 7, July. 2003.
    [12] J. Cai, Q. Zhang, W.Zhu and C. W. Chen, “An FEC-based error control
    scheme for wireless MPEG-4 video transmission,” IEEE Wireless Communications
    and Networking Conference, vol. 3, pp. 1243-1247, Sep. 2000.
    [13] M. U. Demircin and Y. Altunbasak, “Finite horizon FEC rate adaptation
    for real time wireless multimedia,” in IEEE Wireless Communications and
    Networking Conference, pp. 1770-1775, 2004
    [14] Y. Wang and Q. F. Zhu, “Error control and concealment for video communication:
    a Review,” Proceedings of IEEE, vol. 86, no. 5, pp. 974-997, May
    1998.
    [15] Y. Shen and A. Zakhor, “Cross layer techniques for adaptive video streaming
    over wireless networks,” IEEE International Conference on Multimedia Expo,
    vol. 1, pp. 277-280, Aug. 2002.
    [16] H. Liu and M. E. Zarki, “Performance of H.263 video transmission over wireless
    channels using hibrid ARQ,” IEEE Journal on Selected Arears in Communications,
    vol. 5 no. 9, pp. 1775-1786, Dec. 1997.
    [17] C. C. Liu and S. C. S. Chen, “Providing unequal reliability for transmitting
    layered video streams over wireless networks by multi-ARQ schemes,” IEEE
    International Conference on Image Processing, vol. 3, pp. 100-104, Oct. 1999.
    [18] S. Aramvith, C. W. Lin, S. Roy and M. T. Sun, “Wireless video transport
    using conditional retransmission and low-delay interleaving,” IEEE Transactions
    on Circuit and Systems for Video Technology, vol. 12, no. 6, June 2002.
    [19] M. Podolsky, S.McCanne, and M. Vetterli, “Soft ARQ for layered streaming
    media,” University of California, Computer Science Division, Berkeley, CA,
    Tech. RP. UCB/CSD-98-1024, Nov. 1998.
    [20] H. S. Wang and N. Moayeri, “Finite-state Markov channel-A useful model for
    radio communication channels,” IEEE Transaction on Vehicular Technology,
    vol. 44, no. 1, pp. 163-171, Feb. 1995.
    [21] Q. Zhang and S. A. Kassam “Finite-state Markov model for Rayleigh fading
    channels,” IEEE Transation on communications, vol. 47, no. 11, Nov. 1999.
    [22] D. Tian, X. Li, G. A. Regib, Y.Altunbasak and J. R. Jackson, “Optimal
    packet scheduling for wireless video streaming with error-prone feedback,”
    IEEE WCNC, vol. 2, pp. 1287-1292, Mar. 2004.
    [23] Z. Jiang and L. Kleinrock, “A packet selection algorithm for adaptive transmission
    of smoothed video over a wireless channel,” Journal of Parallel and
    Distributed Computing, vol. 60, no. 4, Apr. 2004.
    [24] M. Bayati, D. Shah and M. Sharma, “Maximum weight matching via maxproduct
    belief propagation,” IEEE International Symposium on Information
    Theory, pp. 1763-1767, Sept. 2005.
    [25] B. Huang and T. Jebara, “Loopy belief propagation for bipartite maximum
    weight b-matching,” Proceedings of the Eleventh International Conference on
    Artificial Intelligence and Statistics, Mar. 2007.
    [26] P. Bubbiol, E. Masala and J. C. D. Martin, “Perceptual ARQ for H.264 video
    streaming over 3G wireless networks,” in IEEE Conference on Communications,
    vol. 3, pp. 1288-1292, 2004.
    [27] H. Seferoglu, Y. Altunbasak, O. Gurbuz and O. Ercetin, “Rate Distortion
    optimized joint ARQ-FEC scheme for real-time wireless multimedia,” IEEE
    International Conference on Communications, vol. 2, pp. 1190-1194, May
    2005.

    QR CODE