簡易檢索 / 詳目顯示

研究生: 莊滿在
Man-Tsai Chuang
論文名稱: 具自適應縮放因子之新型變步增量電導法
A novel VSS incremental conductance method with adaptive scaling factor
指導教授: 劉益華
Yi-hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
劉益華
Yi-Hua Liu
鄧人豪
Jen-Hao Teng
楊宗銘
Chung-Ming Young
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 變動步階最大功率點追蹤法最大功率點追蹤優化的增量電導法
外文關鍵詞: variable step size MPPT algorithm, maximum power point (MPP) tracking (MPPT), modified incremental conductance method
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種新型變動步階增量電導法最大功率追蹤技術,所提追蹤方法具有自適應縮放因子之特性,利用狀態估測技術來估測太陽能電池工作環境照度,然後經由狀態估測獲得的環境照度,選擇對應之縮放因子來改善最大功率點的追蹤效能,所提追蹤方法不需要額外增加照度計和溫度感應器,只要量測在任何兩個不同時間點上的電壓和電流值來進行照度估測,然後選擇對應照度下理想的縮放因子進行追蹤,就可以實現快速精確的最大功率點追蹤,改善傳統變動步階增量電導法的追蹤性能。
    本文設置了一個600 W的原型電路來驗證所提追蹤方法,並使用實驗電路驗證了其追蹤性能,與傳統變動步階增量電導法在相同測試條件下互相比較,在追蹤時間縮短了31.8 %而追蹤精確度也分別提高了2.1 %和3.5 %,除此之外追蹤過程能量損失則分別減少了43.9 %和29.9 %。


    In this research, a novel variable step size (VSS) incremental conductance (INC) method with an adaptive scaling factor is proposed. The proposed technique utilizes the model-based state estimation method to calculate the irradiance level and then determine an appropriate scaling factor accordingly to enhance the capability of maximum power point tracking (MPPT), the fast and accurate tracking can be achieved by the presented method without the need for extra irradiance and temperature sensors. Only the Voltage-and-current sets of any two operating points on the characteristic curve are needed to estimate the irradiance level. By choosing a proper scaling factor, the performance of the conventional Variable Step Size incremental conductance method can be improved.
    To validate the studied algorithm, a 600 W prototyping circuit is constructed and the performances are demonstrated experimentally. Compared to conventional Variable Step Size incremental conductance method under the tested conditions, the tracking time is shortened by 31.8 %. The tracking accuracy is also improved by 2.1 % and 3.5 %, respectively. Besides, tracking energy loss is reduced by 43.9 % and 29.9 %, respectively.

    摘要 IV Abstract V 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究文獻探討 3 1.4 本文提出之太陽能最大功率追蹤系統架構 6 1.5 論文大綱 6 第二章 太陽能電池介紹 8 2.1太陽能電池基本模型 8 2.2如何利用產品規格書獲得參數 11 2.3考慮溫度與照度變化之太陽能電池模型 19 第三章太陽能最大功率追蹤技術 24 3.1 太陽能最大功率追蹤技術簡介 24 3.2 最大功率追蹤技術 24 3.3 不同追蹤法分析 28 第四章新型變動步階增量電導法 29 4.1本文進行比較之最大功率追蹤技術簡介 29 4.2新型變動步階增量電導法介紹 31 4.3韌體流程圖 37 第五章實驗模擬與結果分析 39 5.1 實驗設備與環境介紹 39 5.2 太陽能最大功率追蹤模擬評估 42 5.3太陽能最大功率追蹤系統模擬 44 第六章 結論與未來展望 55 6.1結論 56 6.2 未來展望 56 參考文獻 58 附錄 64

    [1] N. Kalaiarasi, S. S. Dash, S. Padmanaban, S. Paramasivam, and P. K.
    Morati, “Maximum power point tracking implementation by dspace
    controller integrated through z-source inverter using particle swarm
    optimization technique for photovoltaic applications, ” Appl Sci, Vol. 8, pp. 145-145, 2018.
    [2] P. C. Chen, P. Y. Chen, Y. H. Liu, J. H. Chen, and Y. F. Lu, “A
    comparative study on maximum power point tracking techniques for
    photovoltaic generation systems operating under fast changing
    environments,” Sol Energy, Vol. 119, pp. 261-276, 2015.
    [3] A. Antonio, B. Rujula, J. Antonio, and C. Abia, “A novel MPPT
    method for PV systems with irradiance measurement,” Sol Energy,
    Vol. 109, pp. 95-104, 2014.
    [4] H. Fathabad, “Novel fast dynamic MPPT (maximum power point
    tracking) technique with the capability of very high accurate power
    tracking,” Energy, Vol. 94, pp. 466-475, 2016.
    [5] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “High-performance
    algorithms for drift avoidance and fast tracking in solar MPPT
    system,” IEEE Trans Enegry Cover, Vol. 23, pp. 681–689, 2008.
    [6] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kan, “A VSS INC MPPT
    Method for PV systems,” IEEE Trans Ind Electron, Vol. 55, pp.
    2622-2628, 2008.
    [7] D. Lalili, A. Mellit, N. Lourci, B. Medjahed, and E. M. Berkouk,
    “Input output feedback linearization control and VSS MPPT
    algorithm of a grid-connected photovoltaic inverter,” Renew Energy, Vol. 36, pp. 3282-3291, 2011.
    [8] Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, “A novel improved
    variable step-size incremental-resistance MPPT method for PV
    systems,” IEEE Trans Ind Electron, Vol. 58, pp. 2427-2434, 2011.
    [9] Y. Jiang, J. A. A. Qahouq, and T. A. Haskew, “Adaptive step size
    with adaptive-perturbation-frequency digital MPPT controller for a
    single-sensor photovoltaic solar system,” IEEE Trans Power
    Electron, Vol. 28, pp. 3195-3205, 2013.
    [10] D. Lalili, A. Mellit, N. Lourci, B. Medjahed, and C. Boubakir, “State
    feedback control and VSS MPPT algorithm of three-level
    grid-connected photovoltaic inverter,” Sol Energy, Vol. 98,
    pp. 561-571, 2013.
    [11] M. Killi and S. Samant, “An adaptive Voltage-sensor-based MPPT
    for photovoltaic systems with SEPIC converter including
    steady-state and drift analysis,” IEEE Trans Ind Electron, Vol, 62, pp. 7609-7618, 2015.
    [12] Y. Shi, R. Li, Y. Xue, and H. Li, “High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency
    ripple-free maximum power point tracking,” IEEE Trans Power
    Electron, Vol. 31, pp. 328-339, 2016.
    [13] A. Loukriz, M. Haddadi, and S. Messalti, “Simulation and experimental design of a new advanced VSS incremental conductance MPPT algorithm for PV systems,” ISA Trans, Vol. 62, pp. 30-38, 2016.
    [14] A. Amir, A. Amir, J. Selvaraj, N. A. Rahima, and A. M. Abusorrah,
    “Conventional and modified MPPT techniques with direct control
    and dual scaled adaptive step-size,” Sol Energy, Vol. 157, pp.
    1017-1031, 2017.
    [15] A. Thangavelu, S. Vairakannu, and D. Parvathyshankar, “Linear open circuit Voltage-variable step-sizeincremental conductance
    strategy-based hybrid MPPT controller for remote power
    applications,” IET Power Electron, Vol. 10, pp. 1363-1376, 2017.
    [16] J. H. Teng, W. H. Huang, T. A. Hsu, and C. Y. Wang, “Novel and fast maximum power point tracking for photovoltaic generation,” IEEE Trans Ind Electron, Vol. 63, pp. 4955-4966, 2016.
    [17] W. Na, P. Chen, and J. Kim, “An improvement of a fuzzy
    logic-controlled maximum power point tracking algorithm for
    photovoltaic applications,” Appl Sci, Vol, 7, pp. 326-326, 2017.
    [18] H. D. Hamed, R. Keypour, M. R. Khalghani, and M. H. Khooban, “A new approach in MPPT for photovoltaic array based on
    extremum seeking control under uniform and non-uniform
    irradiances,” Sol Energy, Vol. 94, pp. 28-36, 2013.
    [19] A. Kchaou, A. Naamane, Y. Koubaa, and N. M’sirdi, “Second order
    sliding mode-based MPPT control for photovoltaic applications,”
    Sol Energy, Vol. 155, pp. 758-769, 2017.
    [20] H. Renaudineau, F. Donatantonio, J. Fontchastagner, G. Petrone,
    G. Spagnuolo, J. P. Martin, and S. A. Pierfederici, “PSO-based global MPPT technique for distributed PV power generation,” IEEE Trans. Ind Electron, Vol. 62, pp. 1047-1058, 2015.
    [21] S. Mohanty, B. Subudhi, and P. K. Ray, “A new MPPT design using
    grey wolf optimization technique for photovoltaic system under
    partial shading conditions,” IEEE Trans Sustain Energy, Vol. 7, pp.
    181-188, 2016.
    [22] M. Ding, D. Lv, C. Yang, S. Li, Q. Fang, B. Yang, and X. Zhang,
    “Global maximum power point tracking of PV systems under partial
    shading condition: a transfer reinforcement learning approach,”
    Appl Sci, Vol. 9, pp. 2769-2769, 2019.
    [23] C. Kalogerakis, E. Koutroulis, and M. G. Lagoudakis, “Global MPPT based on machine-learning for PV arrays operating under partial shading conditions,” Appl Sci, Vol. 10, pp. 700-700, 2020.
    [24] Y. H. Liu, J. H. Chen, and J. W. Huang, “Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method,” Sol Energy, Vol. 103, pp. 350-363, 2014.
    [25] H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems operating under partially shaded conditions,” IEEE
    Trans Ind Electron, Vol. 55, pp. 1689-1698, 2008.
    [26] M. Boztepe, F. Guinjoan, G. Velasco-Quesada, S. Silvestre,
    A. Chouder, and E. Karatepe, “Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm,” IEEE Trans Ind Electron, Vol. 61, pp. 3302-3312, 2014.
    [27] Y. Wang, Y. Li, and X. Ruan, “High-accuracy and fast-speed MPPT
    methods for PV string under partially shaded conditions.” IEEE
    Trans Ind Electron, Vol. 63, pp. 235-245, 2016.
    [28] H. A. Sher, A. F. Murtaza, A. K. Noman, E. Addoweesh,
    K. Al-Haddad, and M. Chiaberge, “A new sensorless hybrid mppt
    algorithm based on fractional short-circuit current measurement and
    P&O MPPT,” IEEE Transactions on Sustainable Energy, Vol.
    6, no.4, pp. 1426-1434, 2015.
    [29] H. A. Sher, A. F. Murtaza, K. E. Addoweesh, and M. Chiaberge, “An
    Intelligent Off-line MPPT technique for PV applications,” IEEE
    Conference on System Process & Control (ICSPE), Kuala Lumpur,
    Malaysia, pp. 316-320, 2013.
    [30] 蔡俊嘉,非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究,國立台灣科技大學電機工程系碩士學位論文,民國102年 1 月。
    [31] F. Vhekired, A. Mellit, A. S. Kalogirou, and C. Larbes, “Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: a comparative study,” Solar Energy, Vol. 101, pp. 83-99, 2014.
    [32] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method, “ IEEE Transactions on Power Electronics, Vol. 20, No.4, pp. 963-973, 2005.
    [33] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, pp. 594-601, 2001.
    [34] K. Ishaque and Z. Salam, “A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition,” Renewable and Sustainable Energy Reviews, Vol. 19, pp. 475-488, 2013.
    [35] 鄧銘華,配電系統狀態估測與應用,國立台灣大學電機工程系
    碩士學位論文,民國88年。
    [36] 王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
    [37] 梁適安,「交換式電源供給器之理論與實務設計」,全華圖書,
    民國93年10月。
    [38] 江炫樟,「電力電子學」第三版,全華圖書,民國94年8月。
    [39] R. W. Erickson and D. Maksmovic, :Fundamentals of Power
    Electronics, 2nd Edition, Kluwer Academic Publishers, 2001.
    [40] 呂昱德,適用於太陽能發電系統之兩段式最大功率追蹤技術,國立台灣科技大學電機工程系碩士學位論文,民國106年。
    [41] F. Liu, S. Duan, F. Liu, B. Liu, and Y. A. Kang, “Variable step size
    INC MPPT method for PV system,” IEEE Transactions on
    Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
    [42] A. Loukriz,; M. Haddadi, and S. Messalti, “Simulation and
    experimental design of a new advanced variable step size
    incremental conductance MPPT algorithm for PV systems,” ISA
    Transactions, Vol. 62, pp. 30-38, 2015.
    [43] P. Giovanni, A. R. P. Carlos, and S. Giovanni, “Photovoltaic
    sources modeling,” 1st, 2017.

    無法下載圖示 全文公開日期 2024/08/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE