簡易檢索 / 詳目顯示

研究生: 余心豪
Xin-Hao Yu
論文名稱: 具有最大功率點追蹤和能量再利用之雙輸入單電感多輸出之能量擷取接面積體電路設計
Integrated Circuit Design of A Dual-Input Single-Inductor Multiple-Output (DISIMO) Energy Harvesting Interface Featuring Maximum Power Point Tracking and Energy Reuse
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 呂良鴻
Liang-Hung Lu
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 最大功率點追蹤能量再利用雙輸入單電感多輸出能量擷取積體電路設計
外文關鍵詞: Dual-Input Single-Inductor Multiple-Output (DISIMO), Energy Harvesting, Maximum Power Point Tracking, Energy Reuse, Zero Current Switching(ZCS)
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹所研發之能量收集接口積體電路,該接口電路架構為雙輸入、單 電感器和多輸出之降壓-升壓轉換器。該電路能從太陽能、熱電或微生物燃料電池 等各種能量來源中提取最大能量。電路輸入可由能量傳感器或儲存搜集到能量之 超級電容器,同時提供1.2V、1.8V 和3.3V 之多輸出電壓。能量收集接口電路包 括三種工作模式,即冷啟動模式、能量收集模式和能量再利用模式。
    在冷啟動模式下,環境能量被轉換成更高的電壓並存儲在電容器中以做為能 量收集模式下之電源。能量收集模式採用部份開路電壓最大功率點跟踪演算法來 調整電感器電流以達到最大功率點追蹤。能量收集電路以異步控制方式操作於邊 界導通模式。利用校準比較器失調電壓方式設計雙向零電流切換方法可最大限度 地減少反向電流耗損。當傳感器無法接收到足夠之輸入能量時,能量再利用模式 將輸入切換到預存儲能量之超級電容器以提供能量來源。該模式使用動態感應脈 衝跳躍技術來降低轉換器的開關損耗。
    所研發之能量收集接口電路晶片採用0.18 μm 1P6M 混合信號CMOS 工藝製 造,所耗面積為6.72mm2。由模擬結果可知,在1mW 輸入能量電路之峰值效率 可達90%。由於功率電晶體之寄生效應,在輸入能量為4mW 時晶片量測峰值效 率降為64%。


    This thesis presents an energy harvesting interface that utilizes a buck-boost converter in a dual-input, single-inductor, and multiple-output configuration. The developed interface circuit is designed to extract the maximum power from various DC energy sources through the photovoltaic transducers, thermoelectric generators, or microbial fuel cells. The input energy of the interface circuit can come from an energy transducer or a supercapacitor. The energy harvesting interface circuit simultaneously provides multiple output voltages, namely 1.2V, 1.8V, and 3.3V, for digital circuits, analog circuits, and the super-capacitor, respectively. Three operating modes, cold-startup, energy-harvesting, and energy-reuse, are designed in the harvesting interface circuit. In the cold-startup mode, the energy transducer voltage is boosted and stored in a capacitor, which provides the required power in the energy-harvesting mode. The energy-harvesting mode employs a fractional open-circuit voltage with a maximum power point tracking (FOCV-MPPT) algorithm so as to adjust the inductor current, achieving the maximum power point tracking. The harvesting circuit operates in the boundary conduction mode (BCM), along with the asynchronous control. A comparator-based bidirectional zero-current switching (ZCS) scheme adjusts the offset voltage to minimize the reverse current loss. The input source is switched to a super-capacitor energy-reuse mode with pre-stored energy to supply the output energy when the transducer fails to scavenge sufficient power. A dynamic sensing pulse-skipping technique is adopted to reduce the switching loss of the converter. A prototype chip, including the proposed energy harvesting interface circuit, is designed and fabricated in a 0.18 μm 1P6M mixed-signal CMOS process, occupying an area of 6.72mm2. The energy harvesting interface circuit achieves 90% peak efficiency at an energy of 1 mW in simulation. The measured peak efficiency drops to 64% when the energy of 4mW due to the power MOS parasitic conduction loss.
    Keywords- Buck-Boost Converters, Energy Harvesting Interface(EHI), Maximum Power Point Tracking(MPPT), Zero Current Switching(ZCS) Boundary Conduction Mode (BCM), Energy Reuse

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Cold Start Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Maximum Power Point Tracking . . . . . . . . . . . . . . . . . . 4 1.2.3 Multiple Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Energy Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Background Knowledge of DC-DC Converters . . . . . . . . . . . . . . . . . . 13 2.1 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Linear Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Inductive Switching DC-DC Converters . . . . . . . . . . . . . . 14 2.2 Buck-Boost Converter Operation Principle Introduction . . . . . . . . . . 16 2.2.1 Continuous Conduction Mode (CCM) . . . . . . . . . . . . . . . 16 2.2.2 Boundary Conduction Mode (BCM) . . . . . . . . . . . . . . . . 17 2.2.3 Discontinuous Conduction Mode (DCM) . . . . . . . . . . . . . 17 2.2.4 Inductor Volt-second Balance . . . . . . . . . . . . . . . . . . . 18 2.2.5 Buck-Boost Converter Output Ripple . . . . . . . . . . . . . . . 20 2.3 Closed-Loop Control Mechanisms . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . 21 2.3.2 Pulse-Frequency Modulation (PFM) . . . . . . . . . . . . . . . . 22 2.4 Analysis of Power Loss and Conversion Efficiency . . . . . . . . . . . . 24 3 Proposed on DISIMO Buck-Boost Converter . . . . . . . . . . . . . . . . . . . 25 3.1 Architecture and Operation of Energy Harvesting System . . . . . . . . . 25 3.2 Energy Harvesting System Modes . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Cold Start-Up Mode . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Harvester Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Reuse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Circuit Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 Reference Generator . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.3 MPPT Control Circuit . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.4 Peak Inductor Current Control Circuit . . . . . . . . . . . . . . . 44 3.3.5 Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.6 Voltage Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.7 Dual Output Pulse Skip Mode Control Circuit . . . . . . . . . . . 52 3.3.8 Hysteresis Voltage Detector . . . . . . . . . . . . . . . . . . . . 54 3.3.9 High Voltage Select . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 Simulation and Measurement Results . . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Sub-Block Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.1 Reference Generator . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2 MPPT Control Circuit . . . . . . . . . . . . . . . . . . . . . . . 63 4.1.3 Peak Inductor Current Control Circuit . . . . . . . . . . . . . . . 64 4.1.4 Zero Current Detector . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.5 Dual Output Pulse Skip Mode Control Circuit . . . . . . . . . . . 66 4.1.6 Hysteresis Voltage Detector . . . . . . . . . . . . . . . . . . . . 67 4.1.7 High Voltage Select . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.1.8 System Simulation Results . . . . . . . . . . . . . . . . . . . . . 69 4.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.1 Test Bench Set Up . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.2 Cold Start Mode Measurement . . . . . . . . . . . . . . . . . . . 73 4.2.3 Harvester Mode Measurement . . . . . . . . . . . . . . . . . . . 73 4.2.4 Harvester Mode Converts to Reuse Mode Measurement . . . . . 77 4.2.5 Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.6 Cross Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.7 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.8 Power Loss Measurement . . . . . . . . . . . . . . . . . . . . . 82 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.1 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Fix Issue and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    [1] Z. J. Lo et al., “A reconfigurable differential-to-single-ended autonomous current adaptation buffer amplifier suitable for biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, no. 6, pp. 1405 – 1418, 2021.
    [2] I. Doms, P. Merken, R. Mertens, and C. Van Hoof, “Integrated capacitive powermanagement circuit for thermal harvesters with output power 10 to 1000 uw,” IEEE International Solid-State Circuits Conference, pp. 300 – 301, 2009.
    [3] Eric J. Carlson; Kai Strunz; Brian P. Otis , “A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting,” IEEE Journal of Solid– State Circuits, vol. 45, no. 4, pp. 741 – 750, 2010.
    [4] Y. K. Ramadass and A. P. Chandrakasan, “A battery-less thermoelectric energy harvesting interface circuit with 35 mv startup voltage,” IEEE Journal of Solid–State Circuits, vol. 46, no. 1, pp. 333 – 341, 2011.
    [5] J.-P. Im, S.-W. Wang, S.-T. Ryu, and G.-H. Cho, “40 mv transformerreuse self-startup boost converter with mppt control for thermoelectric energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 47, no. 12, pp. 3055 – 3067, 2012.
    [6] P. -S. Weng, H. -Y. Tang, P. -C. Ku and L. -H. Lu, “50 mv-input battery less boost converter for thermal energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 48, no. 4, pp. 1031 – 1041, 2013.
    [7] S. Bose, T. Anand, and M. L. Johnston, “Integrated cold start of a boost converter at 57 mv using cross-coupled complementary charge pumps and ultra-low-voltage ring oscillator,” IEEE Journal of Solid–State Circuits, vol. 54, no. 10, pp. 2867 – 2878, 2019.
    [8] S. Bose, T. Anand, and M. L. Johnston, “A 3.5-mv input single inductor self-starting boost converter with loss-aware mppt for efficient autonomous body-heat energy harvesting,” IEEE Journal of Solid–State Circuits, vol. 56, no. 6, pp. 1837 – 1848, 2020.
    [9] T. Esram and P. L.Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439 – 449, 2007.
    [10] V. R. Scarpa, S. Buso, and G. Spiazzi, “Low-complexity mppt technique exploiting the pv module mpp locus characterization,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1531 – 1538, 2009.
    [11] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963 – 973, 2005.
    [12] H. Kim et al., “An energy-efficient fast maximum power point tracking circuit in an 800-μw photovoltaic energy harvester,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2927 – 2935, 2013.
    [13] A. A. Abdelmoaty, M. Al-Shyoukh, Y.-C. Hsu, and A. A. Fayed, “A mppt circuit with 25 μw power consumption and 99.7% tracking efficiency for pv systems,” IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, vol. 64, no. 2, pp. 272 – 282, 2017.
    [14] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size inc mppt method for pv systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622 – 2628, 2008.
    [15] H. Kim et al., “A 1-mw solar-energy-harvesting circuit using an adaptive mppt with a sar and a counter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, pp. 331 – 335, 2013.
    [16] T. H. Tsai and K. Chen, “A 3.4mw photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” IEEE International Solid-State Circuits Conference, pp. 72 – 73, 2013.
    [17] G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nw single–inductor dual-input–tri–output dc–dc buck–boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE Transactions on Power Electronics, vol. 50, no. 11, pp. 2758 – 2772, 2015.
    [18] S. Uprety and H. Lee, “A 93with irradiance-aware auto-reconfigurable mppt scheme achieving >95% mppt efficiency across 650μw to 1w and 2.9ms focv mppt transient time,” IEEE International Solid-State Circuits Conference, pp. 378 – 379, 2017.
    [19] M. Killi and S. Samanta, “Modified perturb and observe mppt algorithm for drift avoidance in photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5549 – 5559, 2015.
    [20] Trishan Esram et al., “Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1282 – 1291, 2006.
    [21] Arian Hashemi Talkhooncheh et al., “A biofuel-cell-based energy harvester with 86% peak efficiency and 0.25-v minimum input voltage using source-adaptive mppt,” IEEE Journal of Solid–State Circuits, vol. 56, no. 6, pp. 715 – 728, 2021.
    [22] Jian-Zhou Yan; Wei-Han Pan; Hung-Hsien Wu; Tien Hsu; Chia-Ling Wei, “Photovoltaic energy harvesting chip with p & o maximum power point tracking circuit and novel pulse-based multiplier,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12867 – 12876, 2021.
    [23] Stefano Stanzione; Chris van Liempd; Rob van Schaijk; Yasuyuki Naito; Firat Yazicioglu; Chris Van Hoof, “A high voltage self-biased integrated dc-dc buck converter with fully analog mppt algorithm for electrostatic energy harvesters,” IEEE Journal of Solid–State Circuits, vol. 48, no. 12, pp. 3002 –3010, 2013.
    [24] Karthik Kadirvel et al., “A 330na energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” IEEE International Solid-State Circuits Conference, pp. 106 – 108, 2012.
    [25] Hyunjin Kim; Junyoung Maeng; Inho Park; Jinwoo Jeon; Dongju Lim; Chulwoo Kim, “A 90.2 % peak efficiency multi-input single-inductor multi-output energy harvesting interface with double-conversion rejection technique and buck-based dualconversion mode,” IEEE Journal of Solid–State Circuits, vol. 56, no. 3, pp. 961 –971, 2021.
    [26] P. Midya; P.T. Krein; R.J. Turnbull; R. Reppa; J. Kimball, “Dynamic maximum power point tracker for photovoltaic applications,” IEEE Power Electronics Specialists Conference, 1996.
    [27] J.-Z. Yan, W.-H. Pan, H.-H. Wu, T. Hsu, and C.-L. Wei, “Photovoltaic energy harvesting chip with p & o maximum power point tracking circuit and novel pulse-based multiplier,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12867 – 12876, 2021.
    [28] S. Stanzione, C. Van Liempd, R. Van Schaijk, Y. Naito, F. Yazicioglu, and C. Van Hoof, “A high voltage self-biased integrated dc-dc buck converter with fully analog mppt algorithm for electrostatic energy harvesters,” IEEE Journal of Solid–State Circuits, vol. 48, no. 12, pp. 3002 – 3010, 2013.
    [29] K. Kadirvel et al., “A 330na energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” IEEE International Solid-State Circuits Conference, pp. 106 – 108, 2012.
    [30] H. Kim et al., “A 90.2% peak efficiency multi-input single-inductor multi-output energy harvesting interface with double-conversion rejection technique and buckbased dual-conversion mode,” IEEE Journal of Solid–State Circuits, vol. 56, no. 3, pp. 961 – 971, 2021.
    [31] P.-H. Chen et al., “A single-inductor triple-source quad-mode energy-harvesting interface with automatic source selection and reversely polarized energy recycling,” IEEE Journal of Solid–State Circuits, vol. 54, no. 10, pp. 2671 – 2679, 2019.
    [32] Young-Seok Noh et al., “A reconfigurable dc-dc converter for maximum thermoelectric energy harvesting in a battery-powered duty-cycling wireless sensor node,” IEEE Journal of Solid–State Circuits, vol. 57, no. 9, pp. 2719 – 2730, 2022. [33] C. Liu, H. Lee, P. Liao, Y. Chen, M. Chung, and P. Chen, “Dual-source energyharvesting interface with cycle-by-cycle source tracking and adaptive peak-inductorcurrent control,” IEEE Journal of Solid–State Circuits, vol. 53, no. 10, pp. 2741 – 2750, 2018.
    [34] Q. Kuai, Q. Wan, and P. K. T. Mok, “A dual-frequency thermal energy harvesting interface with real-time-calculation zcd,” IEEE Journal of Solid–State Circuits, vol. 56, no. 9, pp. 2736 – 2747, 2021.
    [35] Frederik Dostal, “New advances in energy harvesting power conversion,” Analog Dialogue, vol. 49, no. 09, 2015.
    [36] CUI Devices, CP081 030-M, PELTIER MODULE. https://www.cuidevices.com/ product/resource/cp08-m.pdf.
    [37] M. Seok, G. Kim, D. Blaauw, and D. Sylvester, “A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 vt,” IEEE Journal of Solid–State Circuits, vol. 47, no. 10, pp. 2534 – 2545, 2016.
    [38] Texa Instroment, TPS61175, 3-A ,40V High Voltage Boost Converter with Softstart and Programmable Switching Frequency, 2008. https://www.ti.com/lit/gpn/tps61175.
    [39] J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead, WINNER-TAKE-ALL NETWORKS OF O(N) COMPLEXITY, 1989.
    [40] Qin Kuai, Ho-Yin Leung, Qiping Wan, Philip K. T. Mok, “A high-efficiency dualpolarity thermoelectric energy-harvesting interface circuit with cold startup and fast-searching zcd,” IEEE Journal of Solid–State Circuits, vol. 57, no. 6, pp. 1899 – 1912, 2022.

    無法下載圖示 全文公開日期 2028/05/22 (校內網路)
    全文公開日期 2028/05/22 (校外網路)
    全文公開日期 2028/05/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE