簡易檢索 / 詳目顯示

研究生: 邱敬硯
Ching-Yen Chiu
論文名稱: 應用於熱電能量擷取且具最大功率點追蹤及能量回收之自啟動高效能多輸出升壓轉換器
A Self-Start-Up Power-Efficient Multiple-Output Boost Converter for Thermoelectric Energy Harvesting Featuring Maximum Power Point Tracking And Energy Reuse
指導教授: 彭盛裕
Sheng-Yu Peng
口試委員: 陳景然
Ching-Jan Chen
邱煌仁
Huang-Jen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 92
中文關鍵詞: 直流轉換器熱電能量擷取自啟動最大功率點追蹤升壓轉換器降壓升壓轉換器
外文關鍵詞: DC-DC converter, thromoelectric energy harvesting, self-start-up, maximum power point tracking, boost converter, buck-boost converter
相關次數: 點閱:359下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出具有冷起動電路之升壓轉換器來達到熱電能量擷取的功能,以及降壓-升壓轉換器來完成能量重複利用的電源管理單元。採用了峰值電流控制的技巧來達到最大功率提取(maximum power extraction)。使用零電流切換的技術來避免逆向的電感電流以確保高轉換效率。 再者,非同步控制技巧不僅節省了系統時脈產生器的功率消耗,而且因為使用了控制信號交換(handshaking)的技巧使系統更為穩定。此外,採用多輸出的架構來最小化後級低壓降線性穩壓器(low-drop-out linear regulator)的壓降,如此一來可以減少消耗在低壓降線性穩壓器的功率消耗。然而,多輸出架構會具有很多不同的電壓準位,所以提出了贏者全拿的高電壓選擇器在這些多種的電壓準位中選擇出目前系統內部的最高電壓,如此一來,所有的功率開關都能夠被良好的控制以避免漏電流。此外,為了達到最大功率點追蹤(maximum power point tracking)而採用開路電壓偵測(fractional open-circuit voltage)的方法。使用二進位搜尋(binary search)及爬山(hill-climbing)的演算法以達到快速的追蹤速度及較小的輸入電壓漣波。此晶片採用 0.35微米的互補式金氧半製程來實現。量測結果顯示:冷起動電路可在400mV的輸入電壓將系統啟動且冷起動時間約為65毫秒。


    The power management unit (PMU) with cold-start-up circuit and main boost converter (MBC) for thermoelectric energy harvesting and buck-boost converter (BBC) for energy reuse is presented. The peak current control scheme is adopted to achieve maximum power extraction (MPE). Additionally, the zero-current switching (ZCS) control skill is utilized to prevent reverse inductor current so that the high conversion efficiency can be ensured. Moreover, the asynchronous control method not only saves the power consumption of system clock generator, but also makes the system more robust since handshaking skill is used. Besides, multiple-output structure is used to minimize the voltage drop on the low-drop-out regulators (LDOs), which reduces the power lost in LDOs. However, the multiple-output structure possesses different voltage domains. Therefore, the winner-take-all high voltage selector is proposed to choose the highest voltage among different voltage domains so that the power switches can be well controlled to prevent leakage current. Furthermore, the method of fractional open-circuit voltage (FOCV) is adopted for the purpose of maximum power point tracking (MPPT). The binary search and hill-climbing algorithms are utilized for MPPT to possess fast tracking speed and lower ripple of input voltage. The chip is fabricated in 0.35um CMOS process. The measurement results shows that the cold-start-up circuit can start-up the system when input voltage equals to 400mV and the start-up time is about 65 milliseconds.

    Contents Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Floating-gate Transistor and Reliability . . . . . . . . . . . . . . . . . . 5 2 Background Knowledge of DC-DC Converters . . . . . . . . . . . . . . . . . . 9 2.1 DC-DC Converter for Voltage Scaling . . . . . . . . . . . . . . . . . . . 9 2.1.1 Linear Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Switching Capacitor DC-DC Converters . . . . . . . . . . . . . . 9 2.1.3 Inductor-based Switching DC-DC Converters . . . . . . . . . . . 11 2.2 Fundamentals of DC-DC Boost Converters . . . . . . . . . . . . . . . . 11 2.2.1 The Principle of Inductor Volt-second Balance . . . . . . . . . . 11 2.2.2 The Principle of Capacitor Charge Balance . . . . . . . . . . . . 12 2.2.3 The Principle of Small Ripple Approximation . . . . . . . . . . . 13 2.3 Introduction of Operation Principle . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Discontinuous Conduction Mode (DCM) . . . . . . . . . . . . . 14 2.3.2 Continuous Conduction Mode (CCM) . . . . . . . . . . . . . . . 15 2.3.3 Boundary Conduction Mode (BCM) . . . . . . . . . . . . . . . . 15 2.4 The Mechanisms of Closed-loop Control . . . . . . . . . . . . . . . . . . 17 2.4.1 Pulse-width Modulation (PWM) . . . . . . . . . . . . . . . . . . 17 2.4.2 Pulse-frequency Modulation (PFM) . . . . . . . . . . . . . . . . 18 2.5 Analysis of Power Loss and Conversion Efficiency . . . . . . . . . . . . 19 3 Proposed Thermoelectric Energy Harvesting Unit . . . . . . . . . . . . . . . . 20 3.1 System Architecture and Operation . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Cold-start-up Circuit . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Main Boost Converter . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 Buck-boost Converter . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Maximum Power Point Tracking . . . . . . . . . . . . . . . . . . 35 3.2.2 Power Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 Maximum Power Point Tracking Control Block . . . . . . . . . . 41 3.3.2 Peak Current Control Block . . . . . . . . . . . . . . . . . . . . 46 3.3.3 Floating-gate switched-capacitor Comparator . . . . . . . . . . . 48 3.3.4 Floating-gate-soft-start Voltage Detector . . . . . . . . . . . . . . 50 3.3.5 Zero-current-switching Comparator . . . . . . . . . . . . . . . . 52 3.3.6 Winner-take-all High Voltage Selector . . . . . . . . . . . . . . . 55 3.3.7 Constant or Adaptive On-time Control for Buck-boost Converter . 59 4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1 Comparison and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

    [1] E. J. Carlson, L. Strunz, and B. P. Otis, “A 20 mV Input Boost Converter With Efficient Digital Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid–State Circuits, vol. 45, pp. 741–750, April 2010.
    [2] Y. K. Ramadass and A. P. Chandrakasan, “A Batteryless Thermoelectric Energy-Harvesting Interface Circuit With 35 mV Startup Voltage,” IEEE Journal of Solid–State Circuits, vol. 46, pp. 486–487, January 2011.
    [3] J.-P. Im, S.-W. Wang, S.-T. Ryu, and G.-H. Cho, “A 40 mV Transformer-Reuse Self-Startup Boost Converter With MPPT Control for Thermoelectric Energy Harvesting,” IEEE Journal of Solid–State Circuits, vol. 47, pp. 3055–3067, December 2012.
    [4] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting,” IEEE Journal of Solid–State Circuits,vol. 48, pp. 1031–1041, April 2013.
    [5] P.-H. Chen, K. Ishida, K. Ikeuchi, M. Xin Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup Techniques for 95 mV Step-Up Converter by Capacitor Pass-On Scheme and VTH-Tuned Oscillator With Fixed Charge Programming,” IEEE Journal of Solid–State Circuits, vol. 47, pp. 1252–1260, May 2012.
    [6] A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mV-Input Boost Converter With Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting With 220 mV Cold-Start and 14.5 dBm, 915 MHz RF Kick-Start,” IEEE Journal of Solid–State Circuits, vol. 50,
    pp. 1820–1832, August 2015.
    [7] S. Lineykin and S. Ben-Yaakov, “Modeling and Analysis of Thermoelectric Modules,” IEEE Transactions on Industry Applications, vol. 43, pp. 505–512, March/April 2007.
    [8] J. Katic, S. Rodriguez, and A. Rusu, “A Dual-Output Thermoelectric Energy Harvesting Interface With 86.6% Peak Efficiency at 30 uW and Total Control Power of 160 nW,” IEEE Journal of Solid–State Circuits, vol. 51, pp. 1928–1937, August
    2016.
    [9] S.-Y. Peng, P. E. Hasler, and D. V. Anderson, “An Analog Programmable Multidimensional Radial Basis Function Based Classifier,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, pp. 2148–2158, 2007.
    [10] P. Pavan, L. Larcher, and A. Marmiroli, Floating Gate Devices: Operation and Compact Modeling. NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW: Kluwer Academic Publishers, 2004.
    [11] Y. Leblebici and S.-M. Kang, “Modeling and Simulation of Hot-Carrier-Induced Device Degradation in MOS Circuits,” IEEE Journal of Solid–State Circuits, vol. 28, no. 5, pp. 585–595, 1993.
    [12] S. S. Chung, C.-M. Yih, S.-M. Cheng, and M.-S. Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/ Erase Cycles,” vol. 46, no. 9, pp. 1883–1889, 1999.
    [13] Y. Ma, T. G. Gilliland, B. Wang, R. Paulsen, A. Pesavento, C.-H. Wang, H. Nguyen, T. Humes, and C. Diorio, “Reliability of pFET EEPROM With 70-ÅTunnel Oxide Manufactured in Generic Logic CMOS Processes,” vol. 4, no. 3, pp. 353–358, 2004.
    [14] V. Srinivasan, G. J. Serrano, J. Gray, and P. Hasler, “A Precision CMOS Amplifier Using Floating-Gate Transistors for Offset Cancellation,” IEEE Journal of Solid–State Circuits, vol. 42, no. 2, pp. 280–291, 2007.
    [15] V. Srinivasan, G. J. Serrano, C. M. Twigg, and P. Hasler, “A Floating-Gate-Based Programmable CMOS Reference,” IEEE Journal of Solid–State Circuits, vol. 55, no. 11, pp. 3448–3456, 2008.
    [16] D. W. Graham, E. Farquhar, B. Degnan, C. Gordon, and P. Hasler, “Indirect Programming of Floating-Gate Transistors,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 5, pp. 951–963, 2007.
    [17] E. Sanchez-Sinencio, “Low Drop-Out (LDO) Linear Regulators : Design Considerations and Trends for High Power-Supply Rejection (PSR),” in Analog and Mixex-Signal Center Texas A&M Uninersity, February 2110.
    [18] A. Pierre Favrat, P. Deval, and M. J. Declercq, “A High-Efficiency CMOS Voltage Doubler,” IEEE Journal of Solid–State Circuits, vol. 33, pp. 410–416, March 1998.
    [19] H.-H. Wu, C.-L. Wei, Y.-C. Hsu, and R. B. Darling, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency,” vol. 30, pp. 1956–1965, April 2015.
    [20] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng, “A Power-Efficient Highly Linear Reconfigurable Biopotential Sensing Amplifier Using Gate-Balanced Pseudoresistors,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 62, pp. 199–200, February 2015.
    [21] C. Zheng and D. Mna, “A 10MHz 92.1%-Efficiency Green-Mode Automatic Reconfigurable Switching Converter with Adaptively Compensated Single-Bound Hysteresis Control,” IEEE Proceedings of the International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, pp. 204–205, March 2010.
    [22] S. Cho, N. Kim, S. Park, and S. Kim, “A Coreless Maximum Power Point Tracking Circuit of Thermoelectric Generators for Battery Charging Systems,” IEEE Proceedings of the Asian Solid-State Circuits Conference (A-SSCC), vol. 9.
    [23] H. Kim, Y.-J. Min, C.-H. Jeong, K.-Y. Kim, C. Kim, and S.-W. Kim, “A 1-mW Solar-Energy-Harvesting Circuit Using an Adaptive MPPT With a SAR and a Counter,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 60, pp. 331–335, June 2013.
    [24] S. Bandyopadhyay, P. P. andcAndrew C. Lysaght, K. M. Stankovic, and A. P. Chandrakasan, “A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants,” IEEE Journal of Solid–State Circuits, vol. 49, pp. 2812–
    2824, December 2014.
    [25] R. D. Prabha and G. A. Rinc´on-Mora, “0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System,” vol. 31, pp. 2950–2958, April 2016.
    [26] M. M. A. Lazzaro J., Ryckebusch S. and M. C. A., “Winner-Take-All Networks of O(N) Complexity,” vol. 1, pp. 703–711, 1989.
    [27] K.-H. C. Hong-Wei Huang and S.-Y. Kuo, “Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications,” IEEE Journal of Solid–State Circuits, vol. 42, pp. 2451–2465, November 2007.

    QR CODE