簡易檢索 / 詳目顯示

研究生: 詹鈞程
JYUN-CHENG JHAN
論文名稱: 離岸風場併入台電既有系統後最大併網容量評估
Maximum Allowable Generation Capacity of Offshore Wind Farms Connected into the Taipower Existing System
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 吳進忠
Chin-Chung Wu
吳啟瑞
Chi-Jui Wu
呂學德
Shiue-Der Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 128
中文關鍵詞: 離岸風場高占比風力發電暫態分析穩態分析PSS/E
外文關鍵詞: Offshore Wind Farm, High Penetration Wind Power Generation, Transient Stability, Static Stability, PSS/E
相關次數: 點閱:457下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應未來離岸風場大規模併入台電系統,本論文旨在探討當離岸風電併入彰化地區電網時,各一次配電變電所與輸電線路可承受之最大併接容量,並分析離岸風場併網後,對系統電力潮流與暫態穩定度的影響。本論文以PSS/E電力分析軟體進行模擬,採用的模擬系統為台電公司民國107年離峰真實系統,並針對離岸風場提出三種不同併網方法與多個併入地點,以比較電網在不新增線路與採用N-1規劃準則的情況下,離岸風場採用不同併入點與不同併接方式時,系統最大可併入容量與輸電線路承載量之殊異。此外,本文亦會對已併入最大風場容量之電網進行不同電壓等級與距離之故障模擬,並觀察系統面對事故時回復穩定之能力。根據研究結果顯示,離岸風場在採用本文提出之最佳併網架構後,將可使系統的可併網量達到最大並達成政府2025年彰化1.8GW之推廣目標,且透過暫態穩定度與電力潮流等系統衝擊分析,發現系統在故障清除後仍可回復穩定運轉且符合台電「輸電系統規劃準則」與「再生能源發電系統併聯技術要點」之規定,而上述研究結果也可供離岸風場在規劃裝置容量、併入點與併接方式時之參考。


    In order to connect with the future large-scale offshore wind fields into the Taipower system, this thesis aims to explore that each of the primary distribution substation and transmission lines can withstand the maximum capacity when the offshore wind power connected into the power grid in Changhua area. Power System Simulator for Engineering (PSS/E) is used to simulate in this thesis. The real off-peak system of the Taipower company in 2018 is used for the simulation. Three different grid-connected methods for the offshore wind field with multiple sites are proposed. The difference of the maximum capacity and transmission line capacity are compared for the grid without adding lines and with N-1 planning guidelines when offshore wind fields is used with different connected points and different grid-connected methods. In addition, the grid has been connected into the maximum wind capacity and it is tested for the fault simulation in different voltage levels and distances in this thesis. The ability of the system stability to respond to the faults is observed. According to the results of the study, the maximum reachabile grid-connected capacity of the system is reached and the government promotion target of 1.8GW in Changhua in 2025 is also achieved after the optmal grid-connected structure proposed in this thesis is adopted in the offshore wind fields. This reaserch found that the system can be restored to the stable operation after clearing faults and the requirements of "Transmission System Planning Guidelines" and "Renewable Energy Power Generation System Connected Technical Points" in Taipower are also conformed through the system impact analysis of the transient stability and power flow. The results of the above study can also be used for the reference of the capacity, connected point and connected method in offshore wind farm planning.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目標與方法 3 1.4 論文架構 4 第二章 風力發電概論 6 2.1 前言 6 2.2 全球風力發電概況 6 2.2.1 國外風力發電現況與未來發展 6 2.2.2 我國風力發電現況與未來發展 10 2.3 全球高占比風力發電獨力系統 12 2.3.1 美國德州ERCOT (Electric Reliable Council of Texas)系統 13 2.3.2 愛爾蘭AIG(All In Grid)系統 17 2.3.3 夏威夷歐胡島(Oahu)系統 19 2.4 風力發電機之介紹 20 2.4.1 型式A:定速型 21 2.4.2 型式B:限制變速型 22 2.4.3 型式C:小規模變流器變速型 23 2.4.4 型式D:全規模變流器變速型 24 第三章 模擬軟體與風機模型介紹 26 3.1 前言 26 3.2 PSS/E簡介 26 3.3 PSS/E之GEWT4.0MW風力發電機模型介紹 29 3.4 PSS/E之GEWT4.0MW風力發電機內部參數介紹 31 3.5 PSS/E之離岸風場模型建立與電力潮流模擬流程 36 3.6 PSS/E之離岸風場暫態穩定度模擬流程 41 第四章 107年彰化地區大型離岸風場併入台電離峰系統之電力潮流分析 43 4.1 前言 43 4.2 模擬系統架構 43 4.2.1 台電系統介紹 43 4.2.2 彰化地區電網架構 45 4.2.3 彰化離岸風場內部併接架構 46 4.2.4 離岸風場併網規劃 48 4.3 彰化地區輸電線路瓶頸 49 4.4 彰化地區最大可併入容量之模擬流程 52 4.5 大型離岸風場採集中式併網併入彰化地區各D/S變電所之最大可併入容量模擬結果 54 4.5.1 離岸風場集中併入線西變電所之離峰線路潮流分析 54 4.5.2 離岸風場集中併入鹿東變電所之離峰線路潮流分析 57 4.5.3 離岸風場集中併入鹿西變電所之離峰線路潮流分析 59 4.5.4 離岸風場集中併入漢寶變電所之離峰線路潮流分析 61 4.5.5 離岸風場集中併入大城變電所之離峰線路潮流分析 63 4.6 大型離岸風場採分散式併網併入彰化地區各D/S變電所之最大可併入容量模擬結果 66 4.6.1 離岸風場平均分散併入各變電所之離峰線路潮流分析 66 4.6.2 離岸風場依線路承載率分散併入各變電所之離峰線路潮流分析 68 4.7 大型離岸風場併入系統之電壓變動率分析 71 4.8 大型離岸風場併入系統之三相短路電流分析 73 4.9 模擬結果與討論 75 第五章 107年彰化地區大型離岸風場併入台電離峰系統之暫態穩定度分析 76 5.1 前言 76 5.2 風機之低電壓穿越能力 77 5.3 大型離岸風場併入系統後之事故模擬分析 78 5.3.1 161kV事故分析 79 5.3.1.1 事故地點:北部 79 5.3.1.2 事故地點:中部 84 5.3.1.3 事故地點:南部 89 5.3.2 345kV事故分析 95 5.3.2.1 事故地點:北部 95 5.3.2.2 事故地點:中部 100 5.3.2.3 事故地點:南部 105 5.4 大型離岸風場併入系統後之事故臨界清除時間探討 110 5.5 大型離岸風場併入系統後之臨界跳脫範圍 113 5.5.1 345kV系統匯流排故障之離岸風場臨界跳脫範圍 114 5.5.2 161kV系統匯流排故障之離岸風場跳脫範圍 117 5.6 模擬結果與討論 119 第六章 結論與未來展望 121 6.1 結論 121 6.2 未來展望 123 參考文獻 125

    [1] L. Wang, Y. F. Lin, and S.C. Ke, "Stability Analysis of on Offshore Wind Farm Connected to Taiwan Power System Using DigSilent", IEEE OCEANS, pp. 1-5, April 2014.
    [2] L. Wang, et al. "System-Impact Analysis of a Large-Scale Offshore Wind Farm Connected to Taiwan Power System", IEEE Industry Applications Society Annual Meeting, pp. 1-6, Dec.2013.
    [3] Y. K. Wu, C. Y. Lee, and C. J. Chou, "Choice of interconnected points for large-scale offshore wind farms in Taiwan", International Automatic Control Conference (CACS), pp. 439-441, Dec. 2013.
    [4] Y. J. Liu, C. W. Lin, and P. H. Lan, "System impact assessment of connecting planned large-scale wind turbine testing site to distribution power network in Taiwan", IEEE Region 10 Conference (TENCON), pp. 538-541, Feb. 2016.
    [5] Ricardo Vidal-Albalate, Carlos Diaz Sanahuja, Enrique Belenguer, and Ramon Blasco-Gimenez, "Estimation of fault currents in offshore wind power plants connected through HVDC links", 11th IEEE International Conferernce on Compatibility, Power Electronic and Power Engineering (CPE-POWERENG), Cadiz(Span), pp. 34-39, May 2017.
    [6] Kees Jansen, et al. "Resonances due to long HVAC offshore cable connections: studies to verify the immunity of dutch transmission network", IEEE Eindhoven Power Tech, pp.1-6, Sep 2015.
    [7] Moradzadeh, M., Shayeghi, H., and Vandevelde, M, "Impact of increased penetration of large-scale wind farms on power system dynamic stability - A review", IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome(Italy), pp. 1522-1526, July 2015.
    [8] Hongzhi Liu, and Zhe Chen, "Impacts of large-scale offshore wind farm integration on power systems through VSC-HVDC", 2013 IEEE Grenoble Conference, pp. 1-5, June 2013.
    [9] Yuan-Cheng, Miao, "The impact of large-scale offshore wind farm on the power system", CICED 2010 Proceedings, pp. 1-5, March 2011.
    [10] F. Shewarega, I. Erilich, and Jose L. Rueda, "Impact of large offshore wind farms on power system transient stability", 2009 IEEE/PES Power Systems Conference and Exposition, pp. 1-8, March 2009.
    [11] Global Wind Energy Counci (GWEC), "Global Wind Statistic 2016", 2017.
    [12] 康志堅,「主要國家風力發電推動政策暨風電市場、產業及技術研發趨勢分析」,工研院產經中心,2016。
    [13] 經濟部能源局,「再生能源裝(設)置容量」,民國一百零六年。
    [14] 台灣電力公司,「再生能源發展現況」,民國一百零六年。
    [15] 經濟部能源局,「我國再生能源短中長期推薦目標量」,民國一百零四年。
    [16] 經濟部能源局,「離岸風電規劃場址申請作業要點」,民國一百零四年。
    [17] http://www.ercot.com/news/mediakit/maps, "NERC interconnections maps ", 2015.06.
    [18] Electric Reliable Council of Texas (ERCOT), "2016 State of the Grid Report", 2017.
    [19] Electric Reliable Council of Texas (ERCOT), " ERCOT Quick Facts 4317", 2017.
    [20] 吳元康等,「高占比再生能源的系統衝擊以及相關的技術研究,台電工程月刊」,第804期,民國104年。
    [21] EirGrid, "All-Island Generation Capacity Statement 2017-2026", 2017
    [22] EirGrid, "Annual Renewable Energy Constraint and Curtailment Report 2016", 2017.
    [23] https://www.hawaiianelectric.com/about-us/key-performance-metrics/renewable-energy, "historical RPS data", 2017.02.
    [24] 潘建宏,「電力系統與離岸風場併接方法之研究」,碩士論文,國立台北科技大學,民國一百年。
    [25] 王毅等,「風力發電系統的建模與仿真」,中國水利水電出版社,2015年1月。
    [26] 姚竺君,「西門子電力技術服務國技公司動態分析短期課程」,台灣電力公司,民國一百零三年。
    [27] 佘宸祥,「大型風場併入獨立電網之穩定度分析」,碩士論文,國立台灣科技大學,民國一百零四年。
    [28] 魏豪廷、宋偉彰、陳韋佑,「PSS/E 32使用手冊」,台灣電力公司,民國九十九年。
    [29] Yuriy Kazachkov, Ross Altman, Jayapalan Senthil, and Krishnat Patil, "PSS/E Wind Modeling Package for GE 1.5/1.6/2.5/2.75/4.0 MW Wind Turbines User Guide", 2011.
    [30] 台灣電力公司,「台灣電力股份有限公司再生能源發電系統併聯技術要點」,民國一百零二年。
    [31] 台灣電力公司,「台灣電力公司輸電系統規劃準則」,民國一百零五年。
    [32] 蔡文達、陳昭榮,「台灣系統區域電力傳送量與超高壓輸電線臨界清除時間之探討」,中華民國第二十六屆電力工程研討會論文集,中壢,2005,第1675-1679頁。
    [33] 台灣電力公司,「台電供電系統簡介」,民國一百零五年。

    QR CODE