簡易檢索 / 詳目顯示

研究生: 張永昌
Yong-Chang Zhang
論文名稱: 考慮暫態穩定性之配電網電池儲能系統選容與選址研究
Study on Sizing and Sitting of Battery Energy Storage Systems in Distribution Networks with Transient Stability Consideration
指導教授: 楊念哲
Nien-Che Yang
口試委員: 張建國
Chien-Kuo Chang
謝廷彥
Ting-Yen Hsieh
曾威智
Wei-Chih Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 電池儲能系統容量與位置配電網路粒子群演算法柏拉圖最佳化曼哈頓距離法暫態穩定性
外文關鍵詞: battery energy storage system, capacity and location, distribution network, particle swarm optimization, Pareto front, Manhattan distance, transient response
相關次數: 點閱:351下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文評估配電網路中電池儲能系統(battery energy storage system, BESS)容量與位置,應用所提出之暫態指標,增加系統的穩定性與可靠度。首先使用MATLAB R2019b,應用粒子群演算法搜索能力結合柏拉圖最佳化特性來求解多目標問題,透過系統中穩態指標,包含實功率損失、電壓偏差與總營運成本,並藉由曼哈頓距離法得出最小曼哈頓距離與相鄰最小曼哈頓距離之解。接續於商用軟體DIgSILENT PowerFactory 2021中建構電池儲能系統,透過暫態響應時系統變化,評估機組出力情況與短期電壓穩定性指標,在多目標決策機制下,於配電網路中找尋電池儲能系統最終容量與位置。最後考慮了日負載曲線與日太陽能發電曲線,利用IEEE 33-bus放射型配電網路,驗證所提方法之正確性。


    In this paper, the capacity and location of the battery energy storage system (BESS) in the distribution network are evaluated to increase the stability and reliability of power systems by applying the proposed transient stability indicators. The search capability of particle swarm optimization (PSO) combined with Pareto optimality in MATLAB R2019b is used to solve multi-objective problems in steady-state conditions, including active power loss, voltage deviation, and total operating cost. The BESS capacity and location are then derived by the Manhattan distance method. Afterwards, the BESS control model is constructed in commercial software DIgSILENT PowerFactory 2021 to evaluate generator power smoothing and short-term voltage stability index during the transient response, finding the final capacity and location of BESS in distribution networks. Finally, the accuracy of the proposed method is verified by considering the daily load and solar power generation curves using the IEEE 33-bus radial power distribution network.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 2 1.3 文獻探討 3 1.4 論文架構與貢獻 4 第二章 DIgSILENT PowerFactory中元件模型 6 2.1 電池模型 6 2.2 智慧型變流器模型 8 2.3 電池儲能系統模型 10 第三章 問題描述 13 3.1 控制變數 13 3.2 目標函數 14 3.2.1 實功率損失 14 3.2.2 改善電壓偏差 15 3.2.3 總營運成本 15 3.3 限制條件 16 3.3.1 電壓限制 16 3.3.2 電池儲能系統容量限制 17 3.3.3 電力潮流限制 17 第四章 解決方法 19 4.1 柏拉圖最佳化 19 4.2 粒子群演算法 19 4.3 最小曼哈頓距離法 22 4.4 最終解篩選指標 23 4.4.1 機組出力 23 4.4.2 短期電壓穩定性指標 24 4.5 所研提求解步驟 24 第五章 模擬結果分析與比較 27 5.1 測試系統 27 5.1.1 太陽能發電模型 27 5.1.2 負載模型 28 5.2 設置參數 30 5.3 一台電池儲能系統案例研究 31 5.4 兩台電池儲能系統案例研究 35 第六章 結論與未來展望 41 6.1 結論 41 6.2 未來展望 41 參考文獻 43 附錄 46

    [1] H. Mengi-Dinçer, V. Ediger, and Ç. Yesevi, "Evaluating the International Renewable Energy Agency through the lens of social constructivism," Renewable and Sustainable Energy Reviews, vol. 152, p. 111705, 2021.
    [2] D. Rebollal, M. Carpintero-Rentería, D. Santos-Martín, and M. Chinchilla, "Microgrid and distributed energy resources standards and guidelines review: Grid connection and operation technical requirements," Energies, vol. 14, p. 523, 2021.
    [3] D. G. Photovoltaics and E. Storage, "IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces," IEEE Std, pp. 1547-2018, 2018.
    [4] Y. Bae, T.-K. Vu, and R.-Y. Kim, "Implemental control strategy for grid stabilization of grid-connected PV system based on German grid code in symmetrical low-to-medium voltage network," IEEE Transactions on Energy Conversion, vol. 28, pp. 619-631, 2013.
    [5] Y.-K. Wu, J.-H. Lin, and H.-J. Lin, "Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison," IEEE Transactions on Industry Applications, vol. 53, pp. 3205-3216, 2017.
    [6] G. A. Laugs, R. M. Benders, and H. C. Moll, "Balancing responsibilities: Effects of growth of variable renewable energy, storage, and undue grid interaction," Energy Policy, vol. 139, p. 111203, 2020.
    [7] J. Krata and T. K. Saha, "Real-time coordinated voltage support with battery energy storage in a distribution grid equipped with medium-scale PV generation," IEEE Transactions on Smart Grid, vol. 10, pp. 3486-3497, 2018.
    [8] Y. Zhang, K. Meng, F. Luo, H. Yang, J. Zhu, and Z. Y. Dong, "Multi-agent-based voltage regulation scheme for high photovoltaic penetrated active distribution networks using battery energy storage systems," IEEE Access, vol. 8, pp. 7323-7333, 2019.
    [9] A. Alzahrani, H. Alharthi, and M. Khalid, "Minimization of power losses through optimal battery placement in a distributed network with high penetration of photovoltaics," Energies, vol. 13, p. 140, 2019.
    [10] L. A. Wong, V. K. Ramachandaramurthy, S. L. Walker, P. Taylor, and M. J. Sanjari, "Optimal placement and sizing of battery energy storage system for losses reduction using whale optimization algorithm," Journal of Energy Storage, vol. 26, p. 100892, 2019.
    [11] J. A. d. Costa, D. A. Castelo Branco, M. C. Pimentel Filho, M. F. d. Medeiros Júnior, and N. F. d. Silva, "Optimal sizing of photovoltaic generation in radial distribution systems using lagrange multipliers," Energies, vol. 12, p. 1728, 2019.
    [12] N. M. Nor, A. Ali, T. Ibrahim, and M. F. Romlie, "Battery storage for the utility-scale distributed photovoltaic generations," IEEE Access, vol. 6, pp. 1137-1154, 2017.
    [13] Y. Zhang, P. E. Campana, A. Lundblad, and J. Yan, "Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation," Applied energy, vol. 201, pp. 397-411, 2017.
    [14] J. Sardi, N. Mithulananthan, M. Gallagher, and D. Q. Hung, "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied energy, vol. 190, pp. 453-463, 2017.
    [15] S. Ganesan, U. Subramaniam, A. A. Ghodke, R. M. Elavarasan, K. Raju, and M. S. Bhaskar, "Investigation on sizing of voltage source for a battery energy storage system in microgrid with renewable energy sources," IEEE Access, vol. 8, pp. 188861-188874, 2020.
    [16] I. Naidji, M. B. Smida, M. Khalgui, A. Bachir, Z. Li, and N. Wu, "Efficient allocation strategy of energy storage systems in power grids considering contingencies," IEEE Access, vol. 7, pp. 186378-186392, 2019.
    [17] M. Nick, R. Cherkaoui, and M. Paolone, "Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support," IEEE Transactions on Power Systems, vol. 29, pp. 2300-2310, 2014.
    [18] J. Liu, Z. Chen, and Y. Xiang, "Exploring economic criteria for energy storage system sizing," Energies, vol. 12, p. 2312, 2019.
    [19] T. T. Pham, T.-C. Kuo, and D. M. Bui, "Reliability evaluation of an aggregate battery energy storage system in microgrids under dynamic operation," International Journal of Electrical Power & Energy Systems, vol. 118, p. 105786, 2020.
    [20] Y. Wang, K. Tan, X. Y. Peng, and P. L. So, "Coordinated control of distributed energy-storage systems for voltage regulation in distribution networks," IEEE transactions on power delivery, vol. 31, pp. 1132-1141, 2015.
    [21] N. Jayasekara, M. A. Masoum, and P. J. Wolfs, "Optimal operation of distributed energy storage systems to improve distribution network load and generation hosting capability," IEEE Transactions on Sustainable Energy, vol. 7, pp. 250-261, 2015.
    [22] M. Nayeripour, E. Mahboubi-Moghaddam, J. Aghaei, and A. Azizi-Vahed, "Multi-objective placement and sizing of DGs in distribution networks ensuring transient stability using hybrid evolutionary algorithm," Renewable and Sustainable Energy Reviews, vol. 25, pp. 759-767, 2013.
    [23] K. Balu and V. Mukherjee, "Optimal siting and sizing of distributed generation in radial distribution system using a novel student psychology-based optimization algorithm," Neural Computing and Applications, vol. 33, pp. 15639-15667, 2021.
    [24] S. Mirjalili, "Genetic algorithm," in Evolutionary algorithms and neural networks, ed: Springer, 2019, pp. 43-55.
    [25] J.-J. Jiang, W.-X. Wei, W.-L. Shao, Y.-F. Liang, and Y.-Y. Qu, "Research on large-scale bi-level particle swarm optimization algorithm," IEEE Access, vol. 9, pp. 56364-56375, 2021.
    [26] L. Yue and H. Chen, "Unmanned vehicle path planning using a novel ant colony algorithm," EURASIP Journal on Wireless Communications and Networking, vol. 2019, pp. 1-9, 2019.
    [27] Y. Shen and G. Ge, "Multi-objective particle swarm optimization based on fuzzy optimality," IEEE Access, vol. 7, pp. 101513-101526, 2019.
    [28] W.-Y. Chiu, G. G. Yen, and T.-K. Juan, "Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems," IEEE Transactions on Evolutionary Computation, vol. 20, pp. 972-985, 2016.
    [29] Y. Chi and Y. Xu, "Multi-objective robust tuning of STATCOM controller parameters for stability enhancement of stochastic wind-penetrated power systems," IET Generation, Transmission & Distribution, vol. 14, pp. 4805-4814, 2020.
    [30] K. Mahmud, S. Azam, A. Karim, S. Zobaed, B. Shanmugam, and D. Mathur, "Machine learning based PV power generation forecasting in alice springs," IEEE Access, vol. 9, pp. 46117-46128, 2021.

    無法下載圖示 全文公開日期 2027/08/11 (校內網路)
    全文公開日期 2027/08/11 (校外網路)
    全文公開日期 2027/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE