簡易檢索 / 詳目顯示

研究生: 楊奇豫
Chi-Yu Yang
論文名稱: 太赫茲成像系統之功率分配網路與Ka頻帶左右手相位可調合成傳輸線之砷化鎵晶片實現
Power Distributed Network for THz image system and GaAs Chip Realization for Ka-band Left/Right Handed Phase Tunable Synthesized Transmission Line
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 吳宗霖
Tzong-Lin Wu
陳士元
Shih-Yuan Chen
陳晏笙
Yen-Sheng Chen
廖文照
Wen-Jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 141
中文關鍵詞: 太赫茲太赫茲成像系統D頻帶IC載板WR-06波導波導轉接基板整合波導功率分配網路Ka頻帶合成傳輸線連續可調相移器毫米波相移器
外文關鍵詞: Terahertz, Terahertz image system, D-band, IC substrate, WR-06 waveguide, Waveguide transition, Substrate integrated waveguide, Power distributed network, Ka-band, Synthesized transmission line, Continuously tunable phase shifter, mmWave phase shifter
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文包含兩項獨立研究主題。
    第一項研究為「太赫茲成像系統之功率分配網路與D頻帶波導與基板整合波導轉接之系統整合」,吾人採用日月光所提供之先進IC載板製程,在D頻帶完成1分4、1分16、1分64相等振幅、同相位之功率分配網路,作為饋入太赫茲成像系統解算晶片陣列的高頻參考訊號。同時也完成D頻帶WR-06波導與基板整合波導轉接之設計,實現將太赫茲頻率的高頻訊號經由D頻帶WR-06波導,將電磁能量透過孔徑耦合貼片天線耦合至印刷電路板內,成功將太赫茲訊號饋入至印刷電路板,使高頻訊號可在平面電路傳輸,解決太赫茲頻帶訊號皆由波導作為傳輸介面之饋入問題,最終整合上述二者設計,完成太赫茲成像系統功率分配網路之系統設計。
    第二項研究為「Ka頻帶左右手相位可調合成傳輸線砷化鎵晶片之實現」,吾人使用臺灣半導體研究中心(TSRI)所提供之穩懋砷化鎵0.15-um pHEMT製程,使用砷化鎵贗高電子遷移率電晶體(Pseudomorphic High Electron Mobility Transistor, pHEMT),作為一高品質因子且寬電容可調範圍之變容器,取代相位可調合成傳輸線左手(T型)、右手(π形)網路原本的集總式固定電容值,藉由調控變容器之偏壓而改變其電容值,進而使整體左、右手產生漸進相位量,在兩狀態下達到特定相位差,實現1位元相移器之應用,並藉由高阻值低耗損的砷化鎵基板特性,在Ka頻帶完成寬頻、低耗損、相位連續可調左、右手相位可調合成傳輸線之晶片化設計。


    This thesis consists of two independent researches.
    The first part is power distributed network of the terahertz imaging system and the system integration design of the D-band waveguide transition. We use the advanced IC substrate process provided by ASE to realize the design of equal amplitude and in phase power distributed network of 1 to 4, 1 to 16, 1 to 64 at D band, which acts as a high frequency reference signal for the chip of the terahertz imaging system. Meanwhile, I also completed the transition from D-band WR-06 waveguide to substrate integrated waveguide on the printed circuit board. The high frequency signal of the terahertz frequency provided by D-band WR-06 waveguide was successfully coupled to the substrate integrated waveguide through aperture coupled patch antenna as key coupled element. It solves the problem of the terahertz band waveguide as the transmission interface so that the signal can be transmitted in the planar circuit. Finally, I integrated the above two designs to complete the power distributed network of the terahertz imaging system design.
    The second research is the GaAs chip realization of Ka-band left / right handed phase tunable synthesized transmission line. I used the GaAs 0.15-um pHEMT process provided by the National Semiconductor Research Center (TSRI) to fulfill the design. I used GaAs Pseudomorphic High Electron Mobility Transistor (pHEMT) as a varactor, which has high quality factor and wide capacitance tuning range to replace the original capacitor of left-handed (T-network) and right-handed (π-newtwork) networks of phase tunable synthesized transmission line. By tuning the bias voltage of the varactor to change the capacitance value so that the overall phase response of left and right handed network could generate progressive phase shift to fulfill the 1-bit phase shifter. Finally, I completed a continuously tunable left / right handed phase tunable synthesized transmission line with a return loss greater than 20 dB, an insertion loss less than 1.5 dB by using the excellent low loss property of GaAs substrate.

    誌謝 I 摘要 IV Abstract VI 目錄 VIII 圖目錄 XI 表目錄 XVII 第一章 緒論 1 1.1研究動機 1 1.2文獻探討 3 1.3研究貢獻 5 1.4論文組織 6 第二章 太赫茲成像系統之功率分配網路 7 2.1研究動機 7 2.2 IC載板疊構圖 7 2.3功率分配網路關鍵組件設計與分析 8 2.3.1帶線及共平面波導傳輸線結構 8 2.3.2 0.18-μm CMOS微帶線與共平面波導及金球連接 11 2.3.3功率分配網路與天線端隔離度 14 2.3.4功率分配網路阻抗匹配原理 16 2.4功率分配網路 17 2.4量測規劃與測試件 26 2.5結語 34 第三章 太赫茲成像系統之D頻帶波導與基板整合波導轉接 35 3.1 研究動機 35 3.2 PCB板疊構圖 36 3.3 D頻帶波導與基板整合波導轉接關鍵組件設計及分析 37 3.3.1矩形波導與基板整合波導 37 3.3.2 微帶貼片天線 41 3.4 D頻帶波導與基板整合波導轉接設計 42 3.4.1實際量測波導不連續考量 42 3.4.2 D頻帶波導與基板整合波導單邊轉接 44 3.4.3 D頻帶波導與基板整合波導背對背轉接 47 3.5量測與模擬結果比較 51 3.6結語 58 第四章 太赫茲成像系統之功率分配網路系統整合 59 4.1 研究動機 59 4.2 IC載板與PCB板轉接設計與系統整合 59 4.2.1準同軸電纜轉接 59 4.2.2功率分配網路系統整合 63 4.2.3 IC載板與PCB板系統整合與測試件 72 4.4鏈路預算 75 4.5結語 80 第五章Ka頻帶左右手相位可調合成傳輸線之砷化鎵晶片實現 82 5.1研究動機 82 5.2變容器 82 5.2.1 MOS變容器原理 82 5.2.2 pHEMT變容器電晶體尺寸、偏壓選擇 84 5.2.3 pHEMT變容器無方向性驗證 86 5.2.4 pHEMT變容器D=S等電位 88 5.3相位可調合成傳輸線 90 5.3.1 相位可調合成傳輸線概念 90 5.3.2左手網路 91 5.3.3右手網路 96 5.4模擬與量測結果 101 5.6結語 106 第六章 結論 107 6.1 總結 107 6.2 未來發展 108 參考文獻 109

    [1] T. Tanabe et al., "Two-Directional CW THz Wave Generation System by Pumping With a Single Fiber Amplifier of Near-IR Lasers," IEEE Photonics Technology Letters, vol. 21, no. 4, pp. 260-262, Feb.15, 2009
    [2] J. F Federici1, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semiconductor Science and Technology, 20 (2005) S266–S28D.
    [3] C. Zhang, C. Deng, Y. Zhao and X. Zhang, "Passive terahertz imager with an opto-mechanical scanner," International Conference on Infrared, Millimeter, and Terahertz Waves, 2011, pp. 1-2,
    [4] E. S. Lee et al., "High-Speed and Cost-Effective Reflective Terahertz Imaging System Using a Novel 2D Beam Scanner," Journal of Lightwave Technology, vol. 38, no. 16, pp. 4237-4243, 15 Aug.15, 2020,
    [5] Y. Lu et al., "Reflective Single-Pixel Terahertz Imaging Based on Compressed Sensing," IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 5, pp. 495-501, Sept. 2020
    [6] T. Lu, H. Yuan, Z. Zhang, T. Wu, C. Zhang and Y. Zhao, "Experimental 210GHz terahertz nondestructive testing for aerospace composite materials," International Bhurban Conference on Applied Sciences and Technology (IBCAST), 2016, pp. 714-717
    [7] K Song, J Kim, D Kim, MG Seo, JS Rieh, “A CMOS 300-GHz 7 by 7 detector array for THz imaging,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), pp. 31-pp. 33.
    [8] M. Shafi et al., "5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221, June 2017
    [9] Y. Yin, S. Zihir, T. Kanar and G. M. Rebeiz, "A 37-42 GHz 8x8 Phased-Array for 5G Communication Systems with 48-50 dBm EIRP," IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 480-483
    [10] K. Kibaroglu, M. Sayginer and G. M. Rebeiz, "A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2× 2 Beamformer Flip-Chip Unit Cell," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1260-1274, May 2018
    [11] K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-Element 28-GHz Phased-Array Transceiver With 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5796-5811, Dec. 2018
    [12] H. Kim et al., "A 28-GHz CMOS Direct Conversion Transceiver With Packaged 2 × 4 Antenna Array for 5G Cellular System," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1245-1259, May 2018
    [13] S. Zihir, O. D. Gurbuz, A. Kar-Roy, S. Raman and G. M. Rebeiz, "60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4701-4719, Dec. 2016
    [14] B. Ku et al., "A 77–81-GHz 16-Element Phased-Array Receiver With ±50° Beam Scanning for Advanced Automotive Radars," IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 11, pp. 2823-2832, Nov. 2014
    [15] C. Wang, J. Yu, Y. Yao and X. Chen, "Full D-band Coplanar to Rectangular Waveguide Transition for UTC-PD Application," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019, pp. 515-516
    [16] A. Hassona et al., "A Low-loss D-band Chip-to-Waveguide Transition Using Unilateral Fin-line Structure," IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 390-39
    [17] A. Hassona et al., "A Low-loss D-band Chip-to-Waveguide Transition Using Unilateral Fin-line Structure," IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 390-393
    [18] Xiao-Dong Deng, Yihu Li, Wen Wu and Y. Xiong, "A D-band chip-to-waveguide-horn (CWH) antenna with 18.9 dBi gain using CMOS technology," IEEE International Wireless Symposium, 2015, pp. 1-4
    [19] Y. Dong, T. K. Johansen, V. Zhurbenko and P. J. Hanberg, "A Rectangular Waveguide-to-Coplanar Waveguide Transition at D-band Using Wideband Patch Antenna," European Microwave Conference, 2018, pp. 1045-1048
    [20] I. Mohamed and A. Sebak, "Broadband Transition of Substrate-Integrated Waveguide-to-Air-Filled Rectangular Waveguide," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 966-968, Nov. 2018
    [21] Y. Li and K. Luk, "A Broadband V-Band Rectangular Waveguide to Substrate Integrated Waveguide Transition," IEEE Microwave and Wireless Components Letters, vol. 24, no. 9, pp. 590-592, Sept. 2014
    [22] Y. Chen, K. Ma and Y. Wang, "A Novel V-Band Substrate Integrated Suspended Line to Rectangular Waveguide transition," IEEE/MTT-S International Microwave Symposium - IMS, 2018, pp. 186-189
    [23] B. Wang and H. Wong, "Broadband Substrate Integrated Waveguide to Rectangular Waveguide Transition at V-Band," IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 788-789
    [24] M. Jiang, W. Hong, Y. Zhang and H. Zhou, "A broadband waveguide to substrate integrated coaxial line (SICL) transition for w-band applications," Asia-Pacific Microwave Conference, 2014, pp. 70-72.
    [25] J. Li, Y. Huang and G. Wen, "Compact W-band antipodal fin-line transition from SIW to rectangular waveguide," International Applied Computational Electromagnetics Society Symposium, 2017, pp. 1-2.
    [26] C. Li, W. Tan, H. Luo and H. Sun, "W-Band Silicon-Based Transition Substrate-Integrated Waveguide to Air-Filled Rectangular Waveguide," International Conference on Microwave and Millimeter Wave Technology, 2019, pp. 1-3
    [27] D. Zhang, Z. Xu, Y. Xiao and H. Sun, "A wideband siw-to-waveguide transition at w-band,"Asia-Pacific Conference on Antennas and Propagation, 2017, pp. 1-3
    [28] Y. Zhang, S. Shi, R. D. Martin and D. W. Prather, "Broadband SIW-to-Waveguide Transition in Multilayer LCP Substrates at W-Band," IEEE Microwave and Wireless Components Letters, vol. 27, no. 3, pp. 224-226, March 2017
    [29] S. Hansen, S. Kueppers and N. Pohl, "A Wideband Millimeter-Wave SIW-to-RWG Transition for Thin Single Layer Substrates with Thick Metal Cladding," European Microwave Conference, 2018, pp. 117-120
    [30] S. Hansen and N. Pohl, "A W-Band Stepped Impedance Transformer Transition from SIW to RWG for Thin Single Layer Substrates with Thick Metal Cladding," European Microwave Conference, 2019, pp. 352-355
    [31] J. Wang, Z. Hao and Kui-Kui Fan, "A 110–150 GHz SIW-rectangular waveguide transition for terahertz applications," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2016, pp. 1-3
    [32] J.S Chen, “Advanced Architectures for Efficient mm-Wave CMOS wireless transmitters,” Ph.D. Thesis, UC Berkely, May 1, 2014
    [33] S. Gong, H. Shen and N. S. Barker, "A 60-GHz 2-bit Switched-Line Phase Shifter Using SP4T RF-MEMS Switches," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 894-900, April 2011
    [34] J. Wu, T. Chin, S. Chang and C. Chang, "2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2180-2189, Oct. 2008
    [35] C. Lin, S. Chang and W. Hsiao, "A Full-360 Reflection-Type Phase Shifter With Constant Insertion Loss," IEEE Microwave and Wireless Components Letters, vol. 18, no. 2, pp. 106-108, Feb. 2008
    [36] F. Ellinger, H. Jackel and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135-1140, April 2003
    [37] M. A. Y. Abdalla, K. Phang and G. V. Eleftheriades, "A 0.13-$\mu$ m CMOS Phase Shifter Using Tunable Positive/Negative Refractive Index Transmission Lines," IEEE Microwave and Wireless Components Letters, vol. 16, no. 12, pp. 705-707, Dec. 2006
    [38] S. J. Kim and N. H. Myung, "A new active phase shifter using a vector sum method," IEEE Microwave and Guided Wave Letters, vol. 10, no. 6, pp. 233-235, June 2000.
    [39] H. N. Chu and T. Ma, "An Extended 4×4 Butler Matrix With Enhanced Beam Controllability and Widened Spatial Coverage," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1301-1311, March 2018
    [40] H. N. Chu, G. Li and T. Ma, "Planar Pattern Switchable Antenna Using Phase Reconfigurable Synthesized Transmission Lines," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 12, pp. 2319-2323, Dec. 2018
    [41] M. -S. Yang, Y. -T. Lin, K. -Y. Kao and K. -Y. Lin, "A Compact E- Mode GaAs pHEMT Phase Shifter MMIC for 5G Phased-Array Systems," IEEE Asia-Pacific Microwave Conference , 2019, pp. 488-490.
    [42] H. Chang, Y. Wu and Y. Wang, "A 38% Tuning Bandwidth Low Phase Noise Differential Voltage Controlled Oscillator Using a 0.5 um E/D-PHEMT Process," IEEE Microwave and Wireless Components Letters, vol. 19, no. 7, pp. 467-469, July 2009
    [43] Fukunaga, K., Picollo, M. “Terahertz spectroscopy applied to the analysis of artists’ materials,” Appl. Phys. A 100, 591–597 (2010)
    [44] D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microwave and Wireless Components Letters, vol. 11, no. 2, pp. 68-70, Feb. 2001
    [45] K. Wu, M. Bozzi and N. J. G. Fonseca, "Substrate Integrated Transmission Lines: Review and Applications," IEEE Journal of Microwaves, vol. 1, no. 1, pp. 345-363, winter 2021
    [46] D. Deslandes and K. Wu, "Design Consideration and Performance Analysis of Substrate Integrated Waveguide Components," European Microwave Conference, 2002, pp. 1-4
    [47] S. Hall and H. Heck, Advanced signal integrity for high-speed digital designs, Wiley, Hoboken, NJ, 2009
    [48] A. Ghiotto, J. -C. Henrion, T. Martin, J. -M. Pham and V. Armengaud, "AFSIW-to-Microstrip Directional Coupler for High-Performance Systems on Substrate," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 173-176
    [49] N. -H. Nguyen, A. Ghiotto, A. Vilcot, T. -P. Vuong and K. Wu, "Multilayer Slab AFSIW Antipodal Linearly Tapered Slot Antenna With Cross-Polarization Reduction," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 5, pp. 763-767, May 2021
    [50] T. Martin, A. Ghiotto and T. -P. Vuong, "Recent Advances in Filter Design Using The AFSIW Technological Platform," 2019 IEEE 23rd Workshop on Signal and Power Integrity (SPI), 2019, pp. 1-2
    [51] S. Mukherjee, P. Chongder, K. V. Srivastava and A. Biswas, "Design of a broadband coaxial to substrate integrated waveguide (SIW) transition," Asia-Pacific Microwave Conference Proceedings (APMC), 2013, pp. 896-898
    [52] W. M. Abdel-Wahab, H. Al-Saedi, A. Palizban, A. Ehsandar and S. Safavi-Naeini, "SIW-to-Mini-Coaxial Vertical Transition for Low Profile MM-Wave PCB-to-PCB Assembly," IEEE International Symposium on Antennas and Propagation, 2019, pp. 961-962
    [53] P. Andreani and S. Mattisson, "On the use of MOS varactors in RF VCOs," IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000
    [54] J. Oehm and D. Pham-Stabner, "Linear controlled temperature independent varactor circuitry," European Solid-State Circuits Conference, 2002, pp. 143-146.
    [55] Huy Nam Chu,「可重置合成傳輸線及其於可重置天線與相位陣列應用之研究」,博士論文,國立臺灣科技大學,民國一百零七年
    [56] Z. Qiu, J. Liu, H. Xu, G. Su and L. Sun, "A 37–42 GHz Continuous Tunable Phase Shifter in 150 nm GaAs pHEMT," UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies, 2019, pp. 1-3
    [57] Q. Zheng et al., "Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 482-484, May 2017
    [58] K. Tuyen Trinh, C. -H. Lin, H. -L. Kao, H. -C. Chiu and N. Chandra Karmakar, "A 36 - 38 GHz 4-Bit Switch-Type Phase Shifter with Low Insertion Loss for Soil Moisture Radiometer Antenna,"IEEE Eighth International Conference on Communications and Electronics, 2021, pp. 197-202
    [59] E. Lin, C. Huang, S. Tang, C. Su and Y. Wang, "A 36 GHz four-bit tunable all-pass phase shifter using 0.15-µm GaAs technology," TENCON 2015 - 2015 IEEE Region 10 Conference, 2015, pp. 1-4

    無法下載圖示 全文公開日期 2031/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE