簡易檢索 / 詳目顯示

研究生: Hailemeskel Balkew Zewge
Hailemeskel Balkew Zewge
論文名稱: 含聚(乙二醇)的硒化物具氧化還原應答功能之抗癌藥物
DISELENIDE CONTAINING POLY (ETHYLENE GLYCOL) BASED REDOX RESPONSIVE ANTICANCER DRUG CARRIER
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 鄭智嘉
Chih-Chia Cheng
廖愛禾
Ai-Ho Liao
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 147
中文關鍵詞: 化療硒鍵奈米粒子γ射線氧化還原反應腫瘤球狀體
外文關鍵詞: Chemotherapy, Redox-responsive, Diselenide-bond, Nanoparticles, gamma-ray, Tumor-spheroids
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是一種疾病,其特徵在於異常的細胞增生,且是由正常細胞的遺傳物質的損傷和/或突變引起的。癌症治療中,手術、放射治療和化療是最常使用的。在化療的情況下,控制藥物的釋放是最主要的挑戰之一。為了解決這個問題,設計和製造具反應性的奈米藥物載體並確保藥物到達患部並釋放。在使用不同的刺激如光,熱,pH變化,磁場,酶或氧化還原時,功能性材料透過物理或化學變化改變其性質,並按需求釋放載體。然而,在應答奈米藥物載體技術實現之前,需要充分研究和優化奈米藥物載體的參數,例如尺寸,藥物負載能力和由內部或外部刺激的變化引起的藥物動力學,以便減少化療的副作用,延長藥物釋放。在本論文中,合成了含有硒化物的聚合物應答奈米載體,確認其遞送抗癌藥物(阿黴素),並且已經用於增強化療對抗癌症效率。在第一項工作中,合成並確認了多應答(氧化還原,ROS和γ-輻射)硒化物連接的聚(乙二醇)奈米凝膠。拉曼光譜和X-射線光電子光譜分析證實了形成(聚乙二醇-硒)奈米凝膠,而掃瞄式電子顯微鏡和動態光散射儀顯示出均勻的球形奈米顆粒,平均直徑<200奈米。透過HeLa細胞測試合成材料的細胞毒性。透過透析法包住阿黴素,並透過透析法進行奈米凝膠硒化物應答GSH,H2O2和γ輻射藥物釋放。在第二項工作中,合成了氧化還原應答的雙(甲氧基聚(乙二醇))-聚(ε-己內酯)奈米粒子作為藥劑載體。氫譜、碳譜和傅立葉紅外光譜証明了三團聯共聚物的合成,透過奈米粒徑及介面電位量測儀測量奈米顆粒的粒徑和表面電位。使用FAM和多功能場發射掃描式電子顯微鏡研究奈米顆粒的形態。在正常細胞和癌細胞上測試進行細胞存活率分析證實合成的奈米顆粒的毒性較小。透過透析方法加載阿黴素,結果顯示該物質具有高包封效率。透過模擬GSH(6mM)和0.1%H2O2的細胞內水平來評估阿黴素釋放研究,藥物釋放曲線的結果表明奈米顆粒具敏感性。對還原劑和氧化劑有所應答。使用螢光成像研究負載阿黴素的奈米顆粒在癌症和正常細胞上的細胞攝取和細胞內藥物釋放。此外,使用3D腫瘤球體研究了負載阿黴素的奈米顆粒的定位和負載阿黴素的奈米顆粒的抗癌和抑制腫瘤生長。因此,含有雙(聚乙二醇-硒)-聚己內酯奈米顆粒的合成硒化物因其良好的生物相容性,選擇性藥物釋放到癌細胞中,對氧化還原高敏感性以及作為疏水性藥物的載體的是用於癌症治療的極有潛力的材料並提高癌症化療的效率。


    Cancer is a disease that is characterized by uncontrolled cell growth and an absence of cell death and it is caused by damage and/or mutations in the genetic material of normal cells. Among different types of cancer treatments, surgery, radiotherapy, and chemotherapy are the most commonly used. In the case of chemotherapy, the controlled release of therapeutics has been one of the major challenges. To address this problem, the design and fabrication of stimuli-responsive nanomaterials are pursued to guarantee the controlled release of drug for a long period of time to the site of action. Upon applying different stimuli such as light, heat, pH change, magnetic field, enzymes or redox, functional materials change their physicochemical properties through physical changes or chemical reactions, allowing the release of loaded agents on demand. However, before the stimuli-responsive nanocarrier drug delivery technology becomes a reality, important parameters of the nanoparticles such as size, drug loading ability and sustained release kinetics due to the variation of internal or external stimuli need to be well studied and optimized in order to reduce the side effects of chemotherapeutic agents and prolong the drug releasing profile in a controlled manner. In this dissertation, multi-stimuli responsive nanocarriers based on diselenide linkage containing polymers were synthesized and characterized for the delivery of anticancer drug(Doxorubicin) which have been used to enhance the chemotherapeutic efficiency against cancers. In the first work, multi-stimuli (redox, ROS, and gamma-radiation) responsive diselenide linked poly(ethylene glycol) nanogels was synthesized and characterized. The Raman and XPS analysis confirmed the formation (PEG-SeSe)n nanogels while SEM and dynamic light scattering revealed uniform spherical nanoparticles with an average diameter of < 200 nm. The cytotoxicity of the synthesized material was tested using HeLa cells. Doxorubicin (DOX) was encapsulated via dialysis method and the drug release from diselenide containing nanogels in response to GSH, H2O2 and gamma radiation was conducted by dialysis method. In the second work, a redox-sensitive Bi(methoxyl Poly(ethylene glycol))-Poly(ε-caprolactone) nanoparticles were synthesized as a carrier of pharmaceutical agents(DOX).1H-NMR,13C-NMR and FTIR analysis confirmed the formation of Bi(mPEG-SeSe)-PCL triblock copolymer while the particle size and zeta potential of the nanoparticles were measured by DLS. The morphology of the nanoparticles was investigated using AFM and FE-SEM. The MTT assays tested on both normal and cancer cells confirmed less toxicity of the synthesized nanoparticles. DOX was loaded via dialysis method and the result showed the material has high encapsulation efficiency. DOX release study was evaluated by mimicking the intracellular level of GSH(6mM) and 0.1% H2O2, the results of the drug release profile indicated that the nanoparticles were sensitive to both reductant and oxidant stimuli. The cellular uptake and intracellular drug release of DOX-loaded nanoparticles were investigated on cancer and normal cells using fluorescence imaging. In addition, the localization of DOX-loaded nanoparticles and anticancer and tumor growth inhibition activity of DOX-loaded nanoparticles was studied using 3D-tumor spheroids. Thus, the synthesized diselenide containing Bi(mPEG-SeSe)-PCL nanoparticles are promising materials for cancer treatment because of its good biocompatibility, selectively drug release into cancer cells, high sensitivity towards redox environment and the possible usage as a carrier of the hydrophobic drug to enhance the efficiency of cancer chemotherapy.

    摘要 i Abstract iii Acknowledgement v Table of Contents vi List of Figures x List of Table xiv List of Schemes xv List of Abbreviations xvi 1. CHAPTER 1 1 1.1. Introduction 1 1.2. Objectives 4 1.2.1. General Objective 4 1.2.2. Specific Objectives 4 2. CHAPTER 2 5 2.1. Literature Review 5 2.1.1. Drug Delivery System 5 2.1.2. Polymeric Nanoparticles for Anti-Cancer Drug Delivery 8 2.1.3. Stimuli-Responsive Polymeric Nanoparticles for Cancer Therapy 10 2.1.3.1. pH Responsive Polymeric Naoparticles 12 2.1.3.2. Enzyme-Responsive Polymeric Naoparticles 14 2.1.3.3. Redox-Responsive Polymeric Naoparticles 16 2.1.3.4. Thermoresponsive Polymeric Naoparticles 20 2.1.3.5. Light-Responsive Polymeric Naoparticles 21 2.1.3.6. Magnetic Field-Responsive Polymeric Nanoparticles 22 2.1.3.7. Multi-Stimuli Responsive Polymeric Nanoparticles 23 2.1.4. Selenium Containing Polymeric Nanocarriers as Stimuli-Responsive 25 3. CHAPTER 3 29 3.1. Synthesis and Characterization of Diselenide Linked Poly (Ethylene Glycol) Nanogel as Multi-Responsive Drug Carrier 29 3.2. Experimental 33 3.2.1. Materials 33 3.2.2. Preparation of disodium diselenide (Na2Se2) 33 3.2.3. Preparation of Diselenide Linked Polyethylene Glycol (PEG-SeSe)n Nanogel 34 3.2.4. Characterization 35 3.2.5. Cytotoxicity of Diselenide Linked Polyethylene Glycol (PEG-SeSe)n Nanogel 36 3.2.6. Drug Loading Methodology 36 3.2.7. Redox-Responsive DOX Release 37 3.2.8. γ-Ray Responsive DOX release 38 3.3. Results and Discussion 39 3.3.1. Preparation and Characterization of (PEGSeSe)n Polymeric Nanogels 39 3.3.2. Cytotoxicity test 48 3.3.3. Drug loading 49 3.3.4. Redox-responsive drug release 52 3.3.5. γ-Ray Responsive Dox release 52 3.4. Conclusions 54 4. CHAPTER 4 55 4.1. Diselenide linkage containing triblock copolymer nanoparticles based on Bi(methoxylPoly(ethyleneglycol))-Poly(ε-carprolactone): selective intracellular drug delivery in cancer cells 55 4.2. Experimental Section 58 4.2.1. Materials 58 4.2.2. Synthesis of di-tosylated polycaprolactone (TsO-PCL-OTs) 58 4.2.3. Preparation of sodium diselenide (Na2Se2) 59 4.2.4. Synthesis of diselenide containing Bi(mPEG-SeSe)-PCL triblock copolymer 60 4.2.5. Preparation of DOX-loaded Bi(mPEG-SeSe)-PCL Nanoparticle 60 4.2.6. Characterization 62 4.2.7. Redox-Responsive Drug Release 63 4.2.8. Cell Viability Using MTT Assay 63 4.2.9. In Vitro Cellular Uptake 64 4.2.10. Spheroid Formation and Spheroid Uptake Study 65 4.2.11. Growth Inhibition of Tumor Spheroids 66 4.3. Result and Discussion 67 4.3.1. Characterization of Tosylated PCL and Bi(mPEG-SeSe)-PCL Triblock Copolymer 67 4.3.2. Drug Loading of Bi(mPEG-SeSe)-PCL Triblock Copolymer Nanoparticles 75 4.3.3. Size and Distribution of DOX-Loaded Bi(mPEG-SeSe)-PCL Nanoparticles 77 4.3.4. Stimuli-Responsive Drug Release of Nanoparticles 82 4.3.5. In Vitro Cytotoxicity of DOX-Loaded Bi(mPEG-SeSe)PCL Nanoparticles 83 4.3.6. Cellular Uptake and Intracellular Drug Release of DOX-Loaded Nanoparticles 86 4.3.7. Tumor Spheroid Uptake 90 4.3.8. Growth Inhibition of Tumor Spheroids 97 4.4. Conclusion 100 5. CHAPTER 5 101 5.1. General Summary 101 5.2. Recommendation 104 6. Bibliography 105 7. Appendix 128 7.1. List of publication 128

    1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A., Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians 2018,0,3-31.
    2. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F., Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. European Journal of Cancer 2018,103,356-387.
    3. Islami, F.; Goding Sauer, A.; Miller, K. D.; Siegel, R. L.; Fedewa, S. A.; Jacobs, E. J.; McCullough, M. L.; Patel, A. V.; Ma, J.; Soerjomataram, I., Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA: a cancer journal for clinicians 2018, 68 (1), 31-54.
    4. Wilson, L. F.; Antonsson, A.; Green, A. C.; Jordan, S. J.; Kendall, B. J.; Nagle, C. M.; Neale, R. E.; Olsen, C. M.; Webb, P. M.; Whiteman, D. C., How many cancer cases and deaths are potentially preventable? Estimates for Australia in 2013. International journal of cancer 2018, 142 (4), 691-701.
    5. Brown, K. F.; Rumgay, H.; Dunlop, C.; Ryan, M.; Quartly, F.; Cox, A.; Deas, A.; Elliss-Brookes, L.; Gavin, A.; Hounsome, L., The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. British journal of cancer 2018, 118 (8), 1130.
    6. Kakde, D.; Jain, D.; Shrivastava, V.; Kakde, R.; Patil, A., Cancer therapeutics-opportunities, challenges and advances in drug delivery. Journal of Applied Pharmaceutical Science 2011, 1 (9), 1-10.
    7. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. International journal of medical sciences 2012, 9 (3), 193.
    8. Mehta, S. R.; Suhag, V.; Semwal, M.; Sharma, N., Radiotherapy: Basic Concepts and Recent Advances. Medical Journal Armed Forces India 2010, 66 (2), 158-162.
    9. Böhmer, D.; Wirth, M.; Miller, K.; Budach, V.; Heidenreich, A.; Wiegel, T., Radiotherapy and Hormone Treatment in Prostate Cancer: The Use of Combined External Beam Radiotherapy and Hormonal Therapy in the Management of Localized and Locally Advanced Prostate Cancer. Deutsches Ärzteblatt International 2016, 113 (14), 235.
    10. Lorusso, D.; Bria, E.; Costantini, A.; Di Maio, M.; Rosti, G.; Mancuso, A., Patients’ perception of chemotherapy side effects: Expectations, doctor–patient communication and impact on quality of life–An Italian survey. European journal of cancer care 2017, 26 (2), e12618.
    11. Zhou, Q.; Zhang, L.; Yang, T.; Wu, H., Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. International journal of nanomedicine 2018, 13, 2921.
    12. Demaria, M.; O'Leary, M. N.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A. M., Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer discovery 2016.
    13. Torchilin, V. P., Micellar nanocarriers: pharmaceutical perspectives. Pharmaceutical research 2007, 24 (1), 1.
    14. Tanaka, M.; Sato, K.; Kitakami, E.; Kobayashi, S.; Hoshiba, T.; Fukushima, K., Design of biocompatible and biodegradable polymers based on intermediate water concept. Polymer Journal 2015, 47 (2), 114.
    15. Anderson, J. M.; Shive, M. S., Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews 1997, 28 (1), 5-24.
    16. Cheng, J.; Teply, B. A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F. X.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C., Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 2007, 28 (5), 869-876.
    17. Tang, F.; Li, L.; Chen, D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 2012, 24 (12), 1504-34.
    18. Ortega, A. L.; Mena, S.; Estrela, J. M., Glutathione in cancer cell death. Cancers (Basel) 2011, 3 (1), 1285-310.
    19. Zhou, Q.-H.; Lin, J.; Li, L.-D.; Shang, L., Biodegradable micelles self-assembled from miktoarm star block copolymers for MTX delivery. Colloid and Polymer Science 2015, 293 (8), 2291-2300.
    20. Shang, L.; Wang, Q.; Chen, K.; Qu, J.; Lin, J.; Luo, J.-b.; Zhou, Q., Preparation of polydopamine based redox-sensitive magnetic nanoparticles for doxorubicin delivery and MRI detection. Journal of Bioresources and Bioproducts 2017, 2 (2), 67-72.
    21. Singh, A.; Tran, T.-H.; Amiji, M. M., Redox-Responsive Nano-Delivery Systems for Cancer Therapy. 2016, 255-269.
    22. Wondrak, G. T., Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxidants & redox signaling 2009, 11 (12), 3013-3069.
    23. Liou, G. Y.; Storz, P., Reactive oxygen species in cancer. Free Radic Res 2010, 44 (5),479-96.
    24. Dong Liu, F. Y.; Xiong, F.; Gu, N., The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016, 6(9), 1306-1323.
    25. Hrubý, M.; Filippov, S. K.; Štěpánek, P., Smart polymers in drug delivery systems on crossroads: Which way deserves following? European Polymer Journal 2015, 65, 82-97.
    26. Murali, S.; Nair, S. C.; Priya, A., Drug Delivery Research: Current Status and Future Prospects. International Journal of Pharmaceutical Sciences Review and Research 2016, 40 (1), 94-99.
    27. Brannon-Peppas, L.; Blanchette, J. O., Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews 2012, 64, 206-212.
    28. Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C.-W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008, 60 (11), 1278-1288.
    29. Farokhzad, O. C.; Langer, R., Impact of nanotechnology on drug delivery. ACS nano 2009, 3 (1), 16-20.
    30. Khan, D., The Use of Nanocarriers for Drug Delivery in Cancer Therapy. J Cancer Sci Ther 2: 058-062. doi: 10.4172/1948-5956.1000024. OMICS Publishing Group J Cancer Sci Ther ISSN 1948, 5956, 058-062.
    31. De Jong, W. H.; Borm, P. J. A., Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine 2008, 3 (2), 133-149.
    32. Alvarez-Lorenzo, C.; Concheiro, A., Smart drug delivery systems: from fundamentals to the clinic. Chemical Communications 2014, 50 (58), 7743-7765.
    33. Vaupel, P., Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology 2004, 14 (3), 198-206.
    34. Maeda, H., SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Advanced Drug Delivery Reviews 2001, 46 (1), 169-185.
    35. Maeda, H., Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chemistry 2010, 21 (5), 797-802.
    36. Jain, R. K.; Stylianopoulos, T., Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology 2010, 7, 653.
    37. Sarin, H., Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. Journal of angiogenesis research 2010, 2 (1), 14.
    38. Stylianopoulos, T., EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Therapeutic delivery 2013, 4 (4), 421-423.
    39. Peer, D.; Karp, J.; Hong, S.; C Farokhzad, O.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. 2007, 2, 751-60.
    40. Torchilin, V. P., Passive and Active Drug Targeting: Drug Delivery to Tumors as an Example. In Drug Delivery, Schäfer-Korting, M., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2010, 3-53.
    41. Matsumura, Y.; Maeda, H., A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research 1986, 46 (12 Part 1), 6387.
    42. Kataoka, K.; Harada, A.; Nagasaki, Y., Block copolymer micelles for drug delivery: Design, characterization and biological significance. Advanced Drug Delivery Reviews 2012, 64, 37-48.
    43. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific: 2010, 239-250.
    44. Shin, D. H.; Tam, Y. T.; Kwon, G. S., Polymeric micelle nanocarriers in cancer research. Frontiers of Chemical Science and Engineering 2016, 10 (3), 348-359.
    45. Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K., The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science 2008, 33 (4), 448-477.
    46. Banerjee, K.; Banerjee, S.; Mandal, M., Liposomes as a Drug Delivery System. 2015, 53-100.
    47. Kesharwani, P.; Jain, K.; Jain, N. K., Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science 2014, 39 (2), 268-307.
    48. Maeda, H.; Bharate, G. Y.; Daruwalla, J., Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics 2009, 71 (3), 409-419.
    49. Otsuka, H.; Nagasaki, Y.; Kataoka, K., PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews 2012, 64, 246-255.
    50. Cao, W.; Li, Y.; Yi, Y.; Ji, S.; Zeng, L.; Sun, Z.; Xu, H., Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chemical Science 2012, 3 (12), 3403.
    51. Liu, J.; Lee, H.; Huesca, M.; Young, A.; Allen, C., Liposome formulation of a novel hydrophobic aryl-imidazole compound for anti-cancer therapy. Cancer Chemotherapy and Pharmacology 2005, 58 (3), 306.
    52. Couvreur, P., Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews 2013, 65 (1), 21-23.
    53. Cheng, K.; Peng, S.; Xu, C.; Sun, S., Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. Journal of the American Chemical Society 2009, 131 (30), 10637-10644.
    54. Zuleger, S.; Lippold, B. C., Polymer particle erosion controlling drug release. I. Factors influencing drug release and characterization of the release mechanism. International Journal of Pharmaceutics 2001, 217 (1), 139-152.
    55. Cabane, E.; Zhang, X.; Langowska, K.; Palivan, C. G.; Meier, W., Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 2012, 7 (1), 9.
    56. Gerweck, L. E.; Seetharaman, K., Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer research 1996, 56 (6), 1194-1198.
    57. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M., A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release 2008, 126 (3), 187-204.
    58. Hunt, C. A.; MacGregor, R. D.; Siegel, R. A., Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations. Pharmaceutical research 1986, 3 (6), 333-344.
    59. Rao, N. V.; Yoon, H. Y.; Han, H. S.; Ko, H.; Son, S.; Lee, M.; Lee, H.; Jo, D.-G.; Kang, Y. M.; Park, J. H., Recent developments in hyaluronic acid-based nanomedicine for targeted cancer treatment. Expert opinion on drug delivery 2016, 13 (2), 239-252.
    60. Manchun, S.; Dass, C. R.; Sriamornsak, P., Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sciences 2012, 90 (11), 381-387.
    61. Cardone, R. A.; Casavola, V.; Reshkin, S. J., The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Reviews Cancer 2005, 5, 786.
    62. Cairns, R. A.; Harris, I. S.; Mak, T. W., Regulation of cancer cell metabolism. Nature Reviews Cancer 2011, 11, 85.
    63. Rao, N. V.; Ko, H.; Lee, J.; Park, J. H., Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy. Frontiers in bioengineering and biotechnology 2018, 6.
    64. Wang, C.; Wang, G.; Wang, Z.; Zhang, X., A pH-Responsive Superamphiphile Based on Dynamic Covalent Bonds. Chemistry – A European Journal 2011, 17 (12), 3322-3325.
    65. Yang, Y. Q.; Lin, W. J.; Zhao, B.; Wen, X. F.; Guo, X. D.; Zhang, L. J., Synthesis and Physicochemical Characterization of Amphiphilic Triblock Copolymer Brush Containing pH-Sensitive Linkage for Oral Drug Delivery. Langmuir 2012, 28 (21), 8251-8259.
    66. Mahajan, A.; Aggarwal, G., Smart polymers: innovations in novel drug delivery. Int. J. Drug Dev. Res 2011, 3 (3), 16-30.
    67. Mihai, M.; Stoica, I.; Schwarz, S., pH-sensitive nanostructured architectures based on synthetic and/or natural weak polyelectrolytes. Colloid and Polymer Science 2011, 289 (12), 1387-1396.
    68. Jeong, B.; Gutowska, A., Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology 2002, 20 (7), 305-311.
    69. Kim, B.; La Flamme, K.; Peppas, N. A., Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. Journal of Applied Polymer Science 2003, 89 (6), 1606-1613.
    70. Gerweck, L. E.; Vijayappa, S.; Kozin, S., Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Molecular cancer therapeutics 2006, 5 (5), 1275-1279.
    71. Gao, W.; Chan, J. M.; Farokhzad, O. C., pH-responsive nanoparticles for drug delivery. Molecular pharmaceutics 2010, 7 (6), 1913-1920.
    72. Jassal, M.; Boominathan, V. P.; Ferreira, T.; Sengupta, S.; Bhowmick, S., pH-responsive drug release from functionalized electrospun poly (caprolactone) scaffolds under simulated in vivo environment. Journal of Biomaterials science, Polymer edition 2016, 27 (13), 1380-1395.
    73. Hu, J.; Zhang, G.; Liu, S., Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chemical Society Reviews 2012, 41 (18), 5933-5949.
    74. Park, J. B.; Lee, C. S.; Jang, J.-H.; Ghim, J.; Kim, Y.-J.; You, S.; Hwang, D.; Suh, P.-G.; Ryu, S. H., Phospholipase signalling networks in cancer. Nature Reviews Cancer 2012, 12 (11), 782.
    75. Kessenbrock, K.; Plaks, V.; Werb, Z., Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 2010, 141 (1), 52-67.
    76. Egeblad, M.; Werb, Z., New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer 2002, 2 (3), 161.
    77. Hu, Q.; Katti, P. S.; Gu, Z., Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6 (21), 12273-12286.
    78. Jiang, T.; Mo, R.; Bellotti, A.; Zhou, J.; Gu, Z., Gel–liposome‐mediated co‐delivery of anticancer membrane‐associated proteins and small‐molecule drugs for enhanced therapeutic efficacy. Advanced Functional Materials 2014, 24 (16), 2295-2304.
    79. Mura, S.; Nicolas, J.; Couvreur, P., Stimuli-responsive nanocarriers for drug delivery. Nature Materials 2013, 12 (11), 991-1003.
    80. Huo, M.; Yuan, J.; Tao, L.; Wei, Y., Redox-responsive polymers for drug delivery: from molecular design to applications. Polymer Chemistry 2014, 5 (5), 1519-1528.
    81. Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N., Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nature materials 2010, 9 (11), 923.
    82. Zhou, D.; Shao, L.; Spitz, D. R., Reactive oxygen species in normal and tumor stem cells. In Advances in cancer research, Elsevier: 2014; Vol. 122, pp 1-67.
    83. Ballatori, N.; Krance, S. M.; Notenboom, S.; Shi, S.; Tieu, K.; Hammond, C. L., Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem 2009, 390 (3), 191-214.
    84. Montero, A. J.; Jassem, J., Cellular Redox Pathways as a Therapeutic Target in the Treatment of Cancer. Drugs 2011, 71 (11), 1385-1396.
    85. Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z., Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release 2011, 152 (1), 2-12.
    86. Sun, H.; Guo, B.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z., Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009, 30 (31), 6358-6366.
    87. Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-cross-linked PEG-poly (amino acid) s copolymer micelles for glutathione-mediated intracellular drug delivery. Chemical Communications 2008, (48), 6570-6572.
    88. Wang, Y.-C.; Wang, F.; Sun, T.-M.; Wang, J., Redox-Responsive Nanoparticles from the Single Disulfide Bond-Bridged Block Copolymer as Drug Carriers for Overcoming Multidrug Resistance in Cancer Cells. Bioconjugate Chemistry 2011, 22 (10), 1939-1945.
    89. Sun, H.; Guo, B.; Li, X.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z., Shell-Sheddable Micelles Based on Dextran-SS-Poly(ε-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules 2010, 11 (4), 848-854.
    90. Wang, X.; Sun, H.; Meng, F.; Cheng, R.; Deng, C.; Zhong, Z., Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules 2013, 14 (8), 2873-2882.
    91. Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z., Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today 2012, 7 (5), 467-480.
    92. Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A., Oxidation-responsive polymeric vesicles. Nature Materials 2004, 3, 183.
    93.Ren, H.; Wu, Y.; Ma, N.; Xu, H.; Zhang, X., Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter 2012, 8 (5),1460-1466.
    94. Ma, Y.; Dong, W.-F.; Hempenius, M. A.; Möhwald, H.; Julius Vancso, G., Redox-controlled molecular permeability of composite-wall microcapsules. Nature Materials 2006, 5, 724.
    95. Shao, P.; Wang, B.; Wang, Y.; Li, J.; Zhang, Y., The application of thermosensitive nanocarriers in controlled drug delivery. Journal of Nanomaterials 2011, 2011, 17.
    96. Ruel-Gariépy, E.; Leroux, J.-C., In situ-forming hydrogels—review of temperature-sensitive systems. European Journal of Pharmaceutics and Biopharmaceutics 2004, 58 (2), 409-426.
    97. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews 2006, 58 (15), 1655-1670.
    98. Yahara, T.; Koga, T.; Yoshida, S.; Nakagawa, S.; Deguchi, H.; Shirouzu, K., Relationship Between Microvessel Density and Thermographic Hot Areas in Breast Cancer. Surgery Today 2003, 33 (4), 243-248.
    99. Yin, J.; Chen, Y.; Zhang, Z.-H.; Han, X., Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers 2016, 8 (7), 268.
    100. Truong, N. P.; Quinn, J. F.; Anastasaki, A.; Haddleton, D. M.; Whittaker, M. R.; Davis, T. P., Facile access to thermoresponsive filomicelles with tuneable cores. Chemical Communications 2016, 52 (24), 4497-4500.
    101. Tran, N. T. D.; Jia, Z.; Truong, N. P.; Cooper, M. A.; Monteiro, M. J., Fine Tuning the Disassembly Time of Thermoresponsive Polymer Nanoparticles. Biomacromolecules 2013, 14 (10), 3463-3471.
    102. Wei, H.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science 2009, 34 (9), 893-910.
    103. Qin, S.; Geng, Y.; Discher, D. E.; Yang, S., Temperature‐Controlled Assembly and Release from Polymer Vesicles of Poly (ethylene oxide)‐block‐poly (N‐isopropylacrylamide). Advanced Materials 2006, 18 (21), 2905-2909.
    104. Shanmugam, V.; Selvakumar, S.; Yeh, C.-S., Near-infrared light-responsive nanomaterials in cancer therapeutics. Chemical Society Reviews 2014, 43 (17), 6254-6287.
    105. Jochum, F. D.; Theato, P., Temperature-and light-responsive smart polymer materials. Chemical Society Reviews 2013, 42 (17), 7468-7483.
    106. Rasheed, T.; Bilal, M.; Abu-Thabit, N. Y.; Iqbal, H. M., The smart chemistry of stimuli-responsive polymeric carriers for target drug delivery applications. In Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications, Volume 1, Elsevier: 2018; pp 61-99.
    107. Schumers, J. M.; Fustin, C. A.; Gohy, J. F., Light‐responsive block copolymers. Macromolecular rapid communications 2010, 31 (18), 1588-1607.
    108. Yoo, J.-W.; Doshi, N.; Mitragotri, S., Adaptive micro and nanoparticles: Temporal control over carrier properties to facilitate drug delivery. Advanced Drug Delivery Reviews 2011, 63 (14), 1247-1256.
    109. Lecommandoux, S.; Sandre, O.; Chécot, F.; Rodriguez-Hernandez, J.; Perzynski, R., Magnetic Nanocomposite Micelles and Vesicles. Advanced Materials 2005, 17 (6), 712-718.
    110. Kim, J.-E.; Shin, J.-Y.; Cho, M.-H., Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Archives of Toxicology 2012, 86 (5), 685-700.
    111. Nakayama, M.; Akimoto, J.; Okano, T., Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. Journal of drug targeting 2014, 22 (7), 584-599.
    112. Li, Y.; Xiao, K.; Zhu, W.; Deng, W.; Lam, K. S., Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Advanced Drug Delivery Reviews 2014, 66, 58-73.
    113. Sutton, D.; Nasongkla, N.; Blanco, E.; Gao, J., Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical research 2007, 24 (6), 1029-1046.
    114. Torchilin, V. P., Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release 2001, 73 (2), 137-172.
    115. Cheng, R.; Meng, F.; Deng, C.; Klok, H.-A.; Zhong, Z., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013, 34 (14), 3647-3657.
    116. Arnér, E. S. J., Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine? Experimental Cell Research 2010, 316 (8), 1296-1303.
    117. Whanger, P., Selenium and its relationship to cancer: an update. British journal of nutrition 2004, 91 (1), 11-28.
    118. Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V., Selenium nanoparticles as a nutritional supplement. Nutrition 2017, 33, 83-90.
    119. Kieliszek, M.; Błażejak, S., Selenium: Significance, and outlook for supplementation. Nutrition 2013, 29 (5), 713-718.
    120. Win, D. T., Selenium: atomic number 34, mass number 78.96. Auj. T 2003, 7, 1-7.
    121. Tapiero, H.; Townsend, D.; Tew, K., The antioxidant role of selenium and seleno-compounds. Biomedicine & pharmacotherapy 2003, 57 (3-4), 134-144.
    122. Zhang, Q.; Ko, N. R.; Oh, J. K., Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chemical communications 2012, 48 (61), 7542-7552.
    123. Feng, A.; Yuan, J., Smart Nanocontainers: Progress on Novel Stimuli-Responsive Polymer Vesicles. Macromolecular Rapid Communications 2014, 35 (8), 767-779.
    124. Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C., Stimuli-Responsive Nanomaterials for Biomedical Applications. Journal of the American Chemical Society 2015, 137 (6), 2140-2154.
    125. Liu, Z.; Niu, Z.-w., Temperature responsive 3D structure of rod-like bionanoparticles induced by depletion interaction. Chinese Journal of Polymer Science 2014, 32 (10), 1271-1275.
    126. Fang, J.; Seki, T.; Maeda, H., Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Advanced Drug Delivery Reviews 2009, 61 (4), 290-302.
    127. Zhou, W.; Wang, L.; Li, F.; Zhang, W.; Huang, W.; Huo, F.; Xu, H., Selenium‐Containing Polymer@ Metal‐Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Advanced Functional Materials 2017, 27 (6), 1605465.
    128. Ji, S.; Xia, J.; Xu, H., Dynamic Chemistry of Selenium: Se–N and Se–Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Letters 2016, 5 (1), 78-82.
    129. Xia, J.; Ji, S.; Xu, H., Diselenide covalent chemistry at the interface: stabilizing an asymmetric diselenide-containing polymer via micelle formation. Polymer Chemistry 2016, 7 (44), 6708-6713.
    130. Ji, S.; Cao, W.; Yu, Y.; Xu, H., Dynamic diselenide bonds: Exchange reaction induced by visible light without catalysis. Angewandte Chemie International Edition 2014, 53 (26), 6781-6785.
    131. Xu, H.; Cao, W.; Zhang, X., Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics. Accounts of chemical research 2013, 46 (7), 1647-1658.
    132. Zhang, W.; Lin, W.; Pei, Q.; Hu, X.; Xie, Z.; Jing, X., Redox-Hypersensitive Organic Nanoparticles for Selective Treatment of Cancer Cells. Chemistry of Materials 2016, 28 (12), 4440-4446.
    133. Sun, T.; Jin, Y.; Qi, R.; Peng, S.; Fan, B., Oxidation responsive mono-cleavable amphiphilic di-block polymer micelles labeled with a single diselenide. Polymer Chemistry 2013, 4 (14), 4017.
    134. Han, P.; Li, S.; Cao, W.; Li, Y.; Sun, Z.; Wang, Z.; Xu, H., Red light responsive diselenide-containing block copolymer micelles. J. Mater. Chem. B 2013, 1 (6), 740-743.
    135. Ma, N.; Xu, H.; An, L.; Li, J.; Sun, Z.; Zhang, X., Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy. Langmuir 2011, 27 (10), 5874-8.
    136. Ren, H.; Wu, Y.; Li, Y.; Cao, W.; Sun, Z.; Xu, H.; Zhang, X., Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy. Small 2013, 9 (23), 3981-6.
    137. Luan, J. B.; Shen, W. J.; Chen, C.; Lei, K. W.; Yu, L.; Ding, J. D., Selenium-containing thermogel for controlled drug delivery by coordination competition. Rsc Advances 2015, 5 (119), 97975-97981.
    138. Zhang, X.; Xu, H.; Dong, Z.; Wang, Y.; Liu, J.; Shen, J., Highly efficient dendrimer-based mimic of glutathione peroxidase. Journal of the American Chemical Society 2004, 126 (34), 10556-10557.
    139. Liu, J.; Pang, Y.; Chen, J.; Huang, P.; Huang, W.; Zhu, X.; Yan, D., Hyperbranched polydiselenide as a self assembling broad spectrum anticancer agent. Biomaterials 2012, 33 (31), 7765-74.
    140. Xu, H.; Gao, J.; Wang, Y.; Wang, Z.; Smet, M.; Dehaen, W.; Zhang, X., Hyperbranched polyselenides as glutathione peroxidase mimics. Chem Commun (Camb) 2006, (7), 796-8.
    141. Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X., Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. Journal of the American Chemical Society 2010, 132 (2), 442-443.
    142. Chen, M.; Gao, C.; Lü, S.; Chen, Y.; Liu, M., Dual redox-triggered shell-sheddable micelles self-assembled from mPEGylated starch conjugates for rapid drug release. RSC Adv. 2016, 6 (11), 9164-9174.
    143. Meng, F.; Cheng, R.; Deng, C.; Zhong, Z., Intracellular drug release nanosystems. Materials Today 2012, 15 (10), 436-442.
    144. Ma, N.; Li, Y.; Ren, H.; Xu, H.; Li, Z.; Zhang, X., Selenium-containing block copolymers and their oxidation-responsive aggregates. Polymer Chemistry 2010, 1 (10), 1609.
    145. Mugesh, G.; Singh, H. B., Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chemical Society Reviews 2000, 29 (5), 347-357.
    146. Fredga, A., ORGANIC SELENIUM CHEMISTRY. Annals of the New York Academy of Sciences 1972, 192 (1), 1-9.
    147. Tao, W.; He, Z., ROS-responsive drug delivery systems for biomedical applications. asian journal of pharmaceutical sciences 2018,13, 101–112.
    148. Fernandes, A. P.; Gandin, V., Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 2015, 1850 (8), 1642-60.
    149. Zeng, H., Selenium as an Essential Micronutrient: Roles in Cell Cycle and Apoptosis. Molecules 2009, 14 (3), 1263.
    150. Cheng, X.; Jin, Y.; Qi, R.; Fan, W.; Li, H.; Sun, X.; Lai, S., Dual pH and oxidation-responsive nanogels crosslinked by diselenide bonds for controlled drug delivery. Polymer 2016, 101, 370-378.
    151. Roman, M.; Jitaru, P.; Barbante, C., Selenium biochemistry and its role for human health. Metallomics 2014, 6 (1), 25-54.
    152. Lobanov, A. V.; Hatfield, D. L.; Gladyshev, V. N., Eukaryotic selenoproteins and selenoproteomes. Biochimica et Biophysica Acta (BBA)-General Subjects 2009, 1790 (11), 1424-1428.
    153. Yi, Y.; Xu, H.; Wang, L.; Cao, W.; Zhang, X., A new dynamic covalent bond of Se-N: towards controlled self-assembly and disassembly. Chemistry 2013, 19 (29), 9506-10.
    154. Goodwin, A. P.; Mynar, J. L.; Ma, Y.; Fleming, G. R.; Fréchet, J. M., Synthetic micelle sensitive to IR light via a two-photon process. Journal of the American Chemical Society 2005, 127 (28), 9952-9953.
    155. Jiang, J.; Tong, X.; Zhao, Y., A new design for light-breakable polymer micelles. Journal of the American Chemical Society 2005, 127 (23), 8290-8291.
    156. Cao, W.; Zhang, X.; Miao, X.; Yang, Z.; Xu, H., gamma-Ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angew Chem Int Ed Engl 2013, 52 (24), 6233-7.
    157. Wu, W.; Yao, W.; Wang, X.; Xie, C.; Zhang, J.; Jiang, X., Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2015, 39, 260-8.
    158. Zou, H.; Yuan, W., Temperature- and redox-responsive magnetic complex micelles for controlled drug release. J. Mater. Chem. B 2015, 3 (2), 260-269.
    159. Dan Zhao, D. Z.; Ma, S.; Yi, X.; Cheng, S.; Zhuo, R.; Li, F., Reversible core-crosslinked nanocarriers with pH-modulated targeting and redox-controlled drug release for overcoming drug resistance. Journal of Materials Chemistry B 2017, 5 (42), 8399-8407.
    160. Pan, Y. J.; Chen, Y. Y.; Wang, D. R.; Wei, C.; Guo, J.; Lu, D. R.; Chu, C. C.; Wang, C. C., Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 2012, 33 (27), 6570-9.
    161. Chandrasekaran, A. R.; Jia, C. Y.; Theng, C. S.; Muniandy, T.; Muralidharan, S.; Dhanaraj, S. A., Invitro studies and evaluation of metformin marketed tablets-Malaysia. Journal of Applied Pharmaceutical Science. 2011. 01(05), 214-217.
    162. Çolakoğlu, T.; Parlak, M., Structural characterization of polycrystalline Ag–In–Se thin films deposited by e-beam technique. Applied Surface Science 2008, 254 (6), 1569-1577.
    163. Zaiats, G.; Yanover, D.; Vaxenburg, R.; Tilchin, J.; Sashchiuk, A.; Lifshitz, E., PbSe-Based Colloidal Core/Shell Heterostructures for Optoelectronic Applications. Materials 2014, 7 (11), 7243-7275.
    164. Li, C.; Huang, W.; Zhou, L.; Huang, P.; Pang, Y.; Zhu, X.; Yan, D., PEGylated poly(diselenide-phosphate) nanogel as efficient self-delivery nanomedicine for cancer therapy. Polym. Chem. 2015, 6 (36), 6498-6508.
    165. Keiji, K.; Hideyuki, T.; Koichi, K.; Isao, I., NMR and XPS Studies of Some Diselenocarbamates. Bond Switch in Bis(dimethylselenocarbamoyl) Triselenide. Bulletin of the Chemical Society of Japan 1986, 59 (6), 1741-1746.
    166. Helios, K.; Pietraszko, A.; Zierkiewicz, W.; Wójtowicz, H.; Michalska, D., The crystal structure, infrared, Raman and density functional studies of bis(2-aminophenyl) diselenide. Polyhedron 2011, 30 (15), 2466-2472.
    167. Ali, S. T.; Karamat, S.; Kóňa, J.; Fabian, W. M. F., Theoretical Prediction of pKa Values of Seleninic, Selenenic, Sulfinic, and Carboxylic Acids by Quantum-Chemical Methods. The Journal of Physical Chemistry A 2010, 114 (47), 12470-12478.
    168. Nogueira, C. W.; Zeni, G.; Rocha, J. B. T., Organoselenium and Organotellurium Compounds:  Toxicology and Pharmacology. Chemical Reviews 2004, 104 (12), 6255-6286.
    169. Kutikov, A. B.; Song, J., Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 2015, 1 (7), 463-480.
    170. Ramireddy, R. R.; Raghupathi, K. R.; Torres, D. A.; Thayumanavan, S., Stimuli sensitive amphiphilic dendrimers. New Journal of Chemistry 2012, 36 (2), 340-349.
    171. Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X., Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science 2012, 37 (2), 237-280.
    172. Loomis, K.; McNeeley, K.; Bellamkonda, R. V., Nanoparticles with targeting, triggered release, and imaging functionality for cancer applications. Soft Matter 2011, 7 (3), 839-856.
    173. Liu, J.; Huang, W.; Pang, Y.; Huang, P.; Zhu, X.; Zhou, Y.; Yan, D., Molecular self‐assembly of a homopolymer: an alternative to fabricate drug‐delivery platforms for cancer therapy. Angewandte Chemie 2011, 123 (39), 9328-9332.
    174. Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S., Thermo-triggered drug release from actively targeting polymer micelles. ACS applied materials & interfaces 2014, 6 (11), 8549-8559.
    175. Cho, H. K.; Cho, K. S.; Cho, J. H.; Choi, S. W.; Kim, J. H.; Cheong, I. W., Synthesis and characterization of PEO–PCL–PEO triblock copolymers: Effects of the PCL chain length on the physical property of W1/O/W2 multiple emulsions. Colloids and Surfaces B: Biointerfaces 2008, 65 (1), 61-68.
    176. Krouit, M.; Bras, J.; Belgacem, M. N., Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. European Polymer Journal 2008, 44 (12), 4074-4081.
    177. Diao, Y. Y.; Li, H. Y.; Fu, Y. H.; Han, M.; Hu, Y. L.; Jiang, H. L.; Tsutsumi, Y.; Wei, Q. C.; Chen, D. W.; Gao, J. Q., Doxorubicin-loaded PEG-PCL copolymer micelles enhance cytotoxicity and intracellular accumulation of doxorubicin in adriamycin-resistant tumor cells. Int J Nanomedicine 2011, 6, 1955-62.
    178. Lee, J. S.; Hwang, S. J.; Lee, D. S.; Kim, S. C.; Kim, D. J., Formation of Poly (ethylene glycol)-Poly (ε-caprolactone) Nanoparticles via Nanoprecipitation. Macromolecular research 2009, 17 (2), 72-78.
    179. Wu, W.; Yao, W.; Wang, X.; Xie, C.; Zhang, J.; Jiang, X., Bioreducible heparin-based nanogel drug delivery system. Biomaterials 2015, 39, 260-268.
    180. Griffith, L. G.; Swartz, M. A., Capturing complex 3D tissue physiology in vitro. Nature reviews Molecular cell biology 2006, 7 (3), 211.
    181. Schmidt, M.; Scholz, C.-J.; Polednik, C.; Roller, J., Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer. Oncology reports 2016, 35 (4), 2431-2440.
    182. Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; de Boer, J., Spheroid culture as a tool for creating 3D complex tissues. Trends in biotechnology 2013, 31 (2), 108-115.
    183. Jiang, Y.; Pjesivac-Grbovic, J.; Cantrell, C.; Freyer, J. P., A multiscale model for avascular tumor growth. Biophysical journal 2005, 89 (6), 3884-3894.
    184. Baek, N.; Seo, O. W.; Kim, M.; Hulme, J.; An, S. S. A., Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. OncoTargets and therapy 2016, 9, 7207.
    185. Gao, H.; Qian, J.; Yang, Z.; Pang, Z.; Xi, Z.; Cao, S.; Wang, Y.; Pan, S.; Zhang, S.; Wang, W., Whole-cell SELEX aptamer-functionalised poly (ethyleneglycol)-poly (ε-caprolactone) nanoparticles for enhanced targeted glioblastoma therapy. Biomaterials 2012, 33 (26), 6264-6272.
    186. Kotula, A. P.; Snyder, C. R.; Migler, K. B., Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer 2017, 117, 1-10.
    187. Ermeydan, M. A.; Cabane, E.; Hass, P.; Koetz, J.; Burgert, I., Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly (ε-caprolactone) grafting into the cell walls. Green Chemistry 2014, 16 (6), 3313-3321.
    188. Smith, G. P. S.; McLaughlin, A. W.; Clarkson, A. N.; Gordon, K. C.; Walker, G. F., Raman microscopic imaging of electrospun fibers made from a polycaprolactone and polyethylene oxide blend. Vibrational Spectroscopy 2017, 92, 27-34.
    189. Meena, K.; Muthu, K.; Meenatchi, V.; Rajasekar, M.; Bhagavannarayana, G.; Meenakshisundaram, S., Spectrochimica acta part A: molecular and biomolecular spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 124, 663-669.
    190. Hailemeskel, B. Z.; Addisu, K. D.; Prasannan, A.; Mekuria, S. L.; Kao, C.-Y.; Tsai, H.-C., Synthesis and characterization of diselenide linked poly (ethylene glycol) nanogel as multi-responsive drug carrier. Applied Surface Science 2018, 449, 15-22.
    191. Benkaddour, A.; Jradi, K.; Robert, S.; Daneault, C., Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry. Nanomaterials (Basel) 2013, 3 (1), 141-157.
    192. Fernández, M. J.; Fernández, M. D.; Cobos, M., Synthesis, characterization and properties of telechelic hybrid biodegradable polymers containing polyhedral oligomeric silsesquioxane (POSS). RSC Advances 2014, 4 (41), 21435-21449.
    193. Petit, A.; Müller, B.; Bruin, P.; Meyboom, R.; Piest, M.; Kroon-Batenburg, L. M.; de Leede, L. G.; Hennink, W. E.; Vermonden, T., Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA–PEG–PCLA triblock copolymers and their fully hexanoyl-capped derivatives. Acta biomaterialia 2012, 8 (12), 4260-4267.
    194. Izunobi, J. U.; Higginbotham, C. L., Polymer molecular weight analysis by 1H NMR spectroscopy. Journal of Chemical Education 2011, 88 (8), 1098-1104.
    195. Wang, R. E.; Tian, L.; Chang, Y.-H., A homogeneous fluorescent sensor for human serum albumin. Journal of pharmaceutical and biomedical analysis 2012, 63, 165-169.
    196. Meng, L.; Huang, W.; Wang, D.; Huang, X.; Zhu, X.; Yan, D., Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery. Biomacromolecules 2013, 14 (8), 2601-2610.
    197. Cao, J.; Xie, X.; Lu, A.; He, B.; Chen, Y.; Gu, Z.; Luo, X., Cellular internalization of doxorubicin loaded star-shaped micelles with hydrophilic zwitterionic sulfobetaine segments. Biomaterials 2014, 35 (15), 4517-4524.
    198. Sutherland, R. M., Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 1988, 240 (4849), 177-184.
    199. Antoni, D.; Burckel, H.; Josset, E.; Noel, G., Three-dimensional cell culture: a breakthrough in vivo. International journal of molecular sciences 2015, 16 (3), 5517-5527.
    200. Perche, F.; Torchilin, V. P., Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer biology & therapy 2012, 13 (12), 1205-1213.

    QR CODE