簡易檢索 / 詳目顯示

研究生: 黃泰迪
Tai-Di Huang
論文名稱: 基於新電力特徵之非侵入式負載監測辨識
Non-Intrusive Load Monitoring System Based on New Power Signature
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 張宏展
Hong-Chan Chang
吳啟瑞
Chi-Jui Wu
李育杰
Yuh-Jye Lee
葉倚任
Yi-Ren Yeh
蔡孟伸
Men-Shen Tsai
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 非侵入式負載監測電力特徵功率理論串列濾波並列委員會決策
外文關鍵詞: Non-Intrusive Load Monitoring, Power Signature, Power theory, Cascaded Filtering, Parallel Committee Decision Mechanism
相關次數: 點閱:244下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

非侵入式負載監測系統僅需在電力入口端裝設一組電壓與電流感測器,即可得知系統下各別負載的使用情形。
非侵入式負載監測系統辨識準確度大幅依賴於所使用之電力特徵,本文利用功率理論將穩態電流分解成有效與無效電流,藉此取得新的電力特徵,此電力特徵有較佳的獨特性,在傳統穩態電力特徵容易混淆的情況,依然能有效的區分各個負載。
本文提出結合串列濾波(Cascaded Filtering)與並列委員會決策(Parallel Committee Decision Mechanism)之串並列式多電力特徵辨識方法來提升負載辨識的能力,其所需的訓練資料與計算複雜度皆遠小於傳統的監督式學習演算法。
模擬與實測結果證明,本文提出之方法其負載辨識準確度優於傳統的非侵入式負載監測方法。


Non-intrusive load monitoring method (NILM) only requires one set of voltage and current sensors to be installed at the electric service entry for load disaggregation.
NILM’s identity accuracy is closely related to power signatures of loads. This dissertation proposes to use power theory to decompose current waveforms to active and non-active currents. As demonstrated in the dissertation, compared with the traditional steady-state power signatures, the proposed power signature can easily discriminate different loads even though their similarity indices of traditional steady-state power signatures are high.
Furthermore, a scheme based on combining the cascade-filtering approach with the parallel committee decision mechanism is proposed to enhance the load identification capability of the NILM. The proposed method requires much fewer computation operations and training data, compared to the conventional supervised learning approaches, which can greatly save the computation complexity and potentially reduce the required training data.
The simulation and experimental results indicate that the identification accuracy of the proposed method is higher, compared to other conventional NILM methods.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法 2 1.4 本文主要貢獻 3 1.4 論文架構 4 第二章 非侵入式負載監測系統簡介 6 2.1非侵入式負載監測系統簡介與基本概念 6 2.2 電力特徵 7 2.3負載辨識 22 2.4非侵入式負載監測系統之應用 24 第三章 無效電流電力特徵 25 3.1前言 25 3.2 相位預處理 26 3.3 功率理論 28 3.4 有效電流與無效電流之V-I區線(正規化) 32 3.4.1 相似度比較情境一 34 3.4.2 相似度比較情境二 38 3.4.3 相似度比較情境三 42 3.4.4 相似度比較情境四 46 3.5 相似度比較情境總結 51 第四章 串並列辨識方法 54 4.1 串列式 54 4.2 並列委員會決策 57 第五章 實驗平台與結果分析 62 5.1量測平台 62 5.1.1 自耦變壓器 63 5.1.2 比壓器與比流器 63 5.1.3 資料擷取卡 63 5.1.4 自動量測開關 63 5.2 負載辨識情境說明 64 5.2.1 負載辨識情境一 65 5.2.2 負載辨識情境二 66 5.2.3 負載辨識情境三 68 第六章 結論與未來展望 71 6.1 結論 71 6.2 未來展望 71 參考文獻 73

[1] S. Darby, “The Effectiveness of Feedback on Energy Consumption. A Review for Defra of the Literature on Metering, Billing and Direct Displays,” Univ. Oxford, Oxford, U.K., 2006, Tech. Rep.
[2] K. Ehrhardt-Martinez, K. A. Donnelly, and J.A. Laitner, “Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities,” Report E105, ACEEE 2010.
[3] D. He, W. Lin, N. Liu, R. G. Harley, and T. G. Habetler, “Incorporating Non-Intrusive Load Monitoring Into Building Level Demand Response,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 1870-1877, Dec. 2013.
[4] G. W. Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE, vol. 80, no. 12, pp. 1870-1891, Dec. 1992.
[5] H. I. Cheung, S. Lanzisera, J. Lai, R. Brown, S. Dawson-Haggerty, J. Taneja, and D. Culler “Detailed Energy Data Collection for Miscellaneous and Electronic Loads in a Commercial Office Building,” ACEEE summer study on energy efficiency in buildings, 2012.
[6] H. Dawei, D. Liang, Y. Yi, R. G. Harely, and T. G. Habetler, “Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings,” IEEE Trans. Smart Grid, vol. 3, pp. 2286-2293, Dec. 2012.
[7] S. Lanzisera, S. Dawson-Haggertym, H. Y. I. Cheung, J. Taneja, D. Culler, and R. Brown, “Methods for detailed energy data collection of miscellaneous and electronic loads in a commercial office building,” Build. Environ, vol.65, pp. 170-177, 2013.
[8] S. Fryze, “Wirk-, Blind, und Scheinleistung in Elektrischen Stromkreisen mit nichtsinusoidalem Verlauf von Strom und Spannung,” Elektrotech. Zeitschrift, vol. Bd. 53, no. 25, pp. 596 -599.
[9] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng, “Load Signature Study-Part I: Basic Concept, Structure, and Methodology,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 551-560, April 2010.
[10] K. L. Lian, K. S. Tung, and Y. C. Su, “A non-intrusive load monitoring system based on a cascaded method,” 2013 3rd International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1-6, Oct. 2013.
[11] 董冠昇,以串列式方法實現非侵入式負載監測系統,碩士論文,國立台灣科技大學,台北,2014。
[12] J. Liang, S. K. K. Ng, G. Kendall, and J. W. M. Cheng, “Load Signature Study-Part II: Disaggregation Framework, Simulation, and Applications,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 561-569, April 2010.
[13] H. H. Chang, K. L. Lian, Y. C. Su, and W. J. Lee, “Power-Spectrum-Based Wavelet Transform for Nonintrusive Demand Monitoring and Load Identification,” IEEE Transactions on Industry Applications, vol.50, no.3, pp. 2081-2089, May-June 2014.
[14] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox, “Nonintrusive Load Monitoring and Diagnostics in Power Systems,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 7, pp. 1445-1454, July 2008.
[15] M. Hazas, A. Friday, and J. Scott, “Look back before leaping forward: Four decades of domestic energy inquiry,” IEEE Pervasive Computing, vol. 10, no 1, pp. 13-19, 2011.
[16] Y. Lin and M. Tsai, “Development of an Improved Time-Frequency Analysis-Based Nonintrusive Load Monitor for Load Demand Identification,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 6, pp. 1470-1483, June 2014.
[17] 蘇易清,以小波轉換為主之非侵入式負載監測,碩士論文,國立台灣科技大學,台北,2012。
[18] B. S. J. Powers, B. Margossian, and B. Smith, “Using a Rule-Based Algorithm to Disaggregate End-Use Load Profiles from Premise-Level Data,” IEEE Computer Applications in Power, pp. 42-47, 1991.
[19] L. Farinaccio and R. Zmeureanu, “Using a Pattern Recognition Approach to Disaggregate the Total Electricity Consumption in a House into the Major End-Uses,” Energy and Buildings, vol. 30, pp. 245-259, 1999.
[20] M. Akbar and D. Z. A. Khan, “Modified Nonintrusive Appliance Load Monitoring for Nonlinear Devices,” IEEE International Multitopic Conference, pp. 1-5, Dec. 2007.
[21] D. Srinivasan, W. S. Ng, and A. C. Liew, “Neural-Network-Based Signature Recognition for Harmonic Source Identification,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 398-405, Jan. 2006.
[22] A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P. O’Hare, “Real-Time Recognition and Profiling of Appliances through a Single Electricity Sensor,” IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 1-9, June 2010.
[23] T. Saitoh and Y. Aota, “Current sensor based nonintrusive appliance recognition for intelligent outlet,” in Proceedings of the 23rd international technical conference on circuits/systems, computers and communications, 2008.
[24] H. Y. Lam, G. S. K. Fung, W. K. Lee, "A Novel Method to Construct Taxonomy Electrical Appliances Based on Load Signaturesof," IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 653-660, May 2007.
[25] T. Hassan, F. Javed, and N. Arshad, “An Empirical Investigation of V-I Trajectory Based Load Signatures for Non-Intrusive Load Monitoring,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 870-878, March 2014.
[26] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,” IEEE Transactions on Consumer Electronics, vol. 57, no. 1, pp. 76-84, February 2011.
[27] Z. Ahmed, A. Gluhak, M. A. Imran, and S. Rajasegarar, “Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey,” Sensors, vol. 12, no. 12, pp. 16838-16866, 2012.
[28] M. Baranski and J. Voss, “Nonintrusive appliance load monitoring based on an optical sensor,” Power Tech Conference Proceedings, 2003 IEEE Bologna , vol. 4, pp. 8, June 2003.
[29] M. Baranski and J. Voss, “Genetic Algorithm for Pattern Detection in NIALM Systems,” IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 3462-3468, Oct. 2004.
[30] K. Suzuki, S. Inagaki, T. Suzuki, H. Nakamura, and K. Ito, “Nonintrusive appliance load monitoring based on integer programming,” SICE Annual Conference , pp. 2742-2747, Aug. 2008.
[31] H. H. Chang, H. T. Yang, and C. L. Lin, “Load Identification in Neural Networks for a Non-intrusive Monitoring ofIndustrial Electrical Loads”, CSCWD 2007, LNCS 5236, pp. 664-674, 2008.
[32] T. Saitoh, T. Osaki, R. Konishi, and K. Sugahara, “Current Sensor Based Home Appliances and State of Appliance Recognition,” SICE J. Contr., Meas., Syst. Integr., vol. 3, no. 2, pp. 86–93, Mar. 2010.
[33] Y. H. Lin and M. S. Tsai, “Non-Intrusive Load Monitoring by Novel Neuro-Fuzzy Classification Considering Uncertainties,” IEEE Transactions on Smart Grid, vol. 5, no. 5, pp. 2376-2384, Sept. 2014.
[34] C. I. Budeanu, “Puissances reactives et fictives,” Inst. Romain de l’Energie, 1927.
[35] L. S. Czarnecki, “Currents’ Physical Components (CPC) concept: A fundamental of power theory,” International School on Nonsinusoidal Currents and Compensation, pp. 1-11, June 2008.
[36] P. Tenti, E. Tedeschi, and P. Mattaveli, “compensation techniques based on reactive power conservation,” Electr. Power Qual. Utilizat., vol. 13 , no. 1, pp. 17-24, 2007.
[37] D. Jeltsema and J. van der Woude, “Currents’ Physical Components (CPC) in the time-domain: single-phase systems,” in proc. 13th European Control Conference, 2014.
[38] T. D. Huang, W. S. Wang, and K. L. Lian, “A New Power Signature for Nonintrusive Appliance Load Monitoring” IEEE Transactions on Smart Grid, accepted.

無法下載圖示 全文公開日期 2020/06/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE