簡易檢索 / 詳目顯示

研究生: 陳哲豪
Che-Hao Chen
論文名稱: 光電晶體元件結構設計之研究
Study of Structural Design of Phototransistor Devices
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 劉政光
Cheng-Kuang Liu
趙良君
Liang -Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 122
中文關鍵詞: 光電晶體光檢測器光偵測器
外文關鍵詞: phototransistor, photodetector
相關次數: 點閱:293下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

消費市場對光電積體電路(OEIC’s)的需求日益增加。為了尺寸微縮以及成本縮減考量下,高響應度及高速性能的光檢測器製造技術是當然必需的。
在本論文中,我們將經由模擬來探討光電晶體。一開始會討論傳統型光電晶體和光二極體。我們發現傳統型光電晶體有著良好的響應度但伴隨著較差的速度性能。而傳統型光二極體卻有著相異於傳統型光電晶體的情況,也就是說,低落的響應度與良好的高速性能。緊接著,我們縮減了基極的的深度以增進響應度與速度性能,且提高基極的雜質摻雜濃度來得到更高的速度性能。最後,我們在緊鄰著基極的地方放置了受體雜質的輕摻雜區域來延伸光的吸收區域。因此我們稱之為延展基極結構。這個結構也確實地有助於響應度與高速性能的改善。


The commercial market for optoelectronic integrated circuits (OEIC’s) is expanding at rapid rate. It is necessary that a photodetector fabrication technique of high responsivity and high-speed performance is required for scale-down and cost-reduction concerns.
In this thesis, phototransistors are studied by simulation. The conventional phototransistor and photodiode are discussed first. We find that the conventional phototransistor has a good responsivity but lower speed performance. The condition of the conventional photodiode is directly opposite to the conventional phototransistors, that is, a poor responsivity but higher speed performance. Subsequently, we reduce the depth of base in order to improve both responsivity and speed performance, and raise the doping concentration of base for high-speed performance. Finally, we put a p- region next to the base on purpose that the absorption region will be extended. For that reason, we call it an extended-base structure. This structure is distinctly conducive to responsivity and speed performance.

Abstract (Chinese)…………………………...………………………………..………i Abstract (English)………………………...…………………………………………..iii Acknowledgement (Chinese)………………...………………………………………..v Contents…………………………………………………………………………...….vi Table List……………………………………………………………………………...ix Figure Captions…………………………………………………...…………………...x Chapter 1 Introduction………………………………………………………………...1 1.1 Applications of photodetector (PD)………...…………..…………………....1 1.2 Photodetector in integrated BiCMOS technology…………………………...1 1.3 Principle and types of photodetectors………………………………………..2 1.3.1 PN junction photodiode…………………………………....................3 1.3.2 Absorption coefficient and photodiode materials…………………….4 1.3.3 Quantum efficiency and responsivity………………………………...5 1.3.4 PIN photodiode……………………………………………………….6 1.3.5 Avalanche photodiode (APD)………………………………………...7 1.3.6 Heterojunction photodiodes…………………………………………..9 1.3.7 Phototransistors……………………………………………………...10 1.4 Motivation…………………………………………………………………..11 Chapter 2 Results and Discussion (1) – Large-Size Structure.....................................27 2.1 The sample of a conventional photodiode…………………….....................27 2.1.1 Simulation parameters…………………………………....................27 2.1.2 Device scheme…………………………………………....................27 2.1.3 Results and discussion…………………………………....................27 2.2 The conventional phototransistor............................... ...................................28 2.2.1 Dark current.............................................................. ..........................28 2.2.2 Responsivity…………………………………….................………...29 2.2.3 Frequency response……………………………….................………29 2.3 Extended base structure…………………………………...................……...30 2.3.1 Device Scheme………………………………….................………...30 2.3.2 Results and discussion………………………….................….……...30 2.4 E-B Junction Area Modulation…………………………...................………31 2.4.1 Device scheme………………………………………….. ..................31 2.4.2 Results and discussion…………………………………... .................31 2.5 Extended Base Structure with E-B Junction Area Modulation... .................32 2.5.1 Device scheme………………………………………….. ..................32 2.5.2 Results and discussion………………………………….. ..................32 2.6 Base Width Modulation……………………………………….. ..................33 2.6.1 Device scheme………………………………………….. ..................33 2.6.2 Results and discussion…………………………………... .................33 2.7 Extended Base Structure with Base Width Modulation……….. .................34 2.7.1 Device scheme………………………………………….....................34 2.7.2 Results and discussion………………………………….. ..................34 Chapter 3 Results and Discussion (2) – Small-Size Structure................ ....................74 3.1 The conventional phototransistor………………………………...................74 3.1.1 Device scheme………………………………………….. ..................74 3.1.2 Results and discussion………………………………….. ..................74 3.2 Base width modulation………………………………………...................…75 3.2.1 Device scheme………………………………………….. ..................75 3.2.2 Results and discussion…………………………………... .................75 3.3 Extend base structure…………………………………………... .................76 3.3.1 Device scheme…………………………………………... .................76 3.3.2 Results and discussion…………………………………... .................76 3.4 Extend base structure…………………………………………... .................77 3.3.1 Device scheme…………………………………………... .................77 3.3.2 Results and discussion…………………………………... .................77 Chapter 4 Conclusions…………………………………………………...................102 References…………………………………………………………….. ...................104 Vita……………………………………………………………………. ...................107

[1] J. Sturm, M. Leifhelm, H. Schatzmayr, St. GroiB, and H. Zimmermann, “Optical receiver IC for CD/DVD/blue-laser application,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1406-1413, Jul. 2005.
[2] M. Haurylau, H. Chen, and J. Zhang, et al., “On-chip optical interconnect roadmap: Challenges and critical directions,” in Proc. 2nd Int. Conf. Group IV Photon., 2005, pp.17-19.
[3] M. Rouviére, L. Vivien, and X. Le Roux, et al., “35 GHz bandwidth germanium-on-silicon photodetector,” in Proc. 2nd Int. Conf. Group IV Photon., 2005, pp. 174-176.
[4] M. Jutzi, M. Berroth, G. Wohl, M. Oehme, and E. Kasper, “Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 17, no. 7, pp.1510-1512, Jul. 2005.
[5] G. Dehlinger, S. J. Koester, J. D. Schaub, J. O. Chu, Q. C. Ouyang, and A. Grill, “High-speed germanium-on-SOI lateral PIN photodiodes,’ IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2547-2549, Nov. 2004.
[6] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett., vol. 24, no. 10, pp. 643-645, Oct. 2003.
[7] L. D. Garrett, J. Qi, C. L. Schow, and J. C. Campbell, “A silicon-based integrated NMOS-p-i-n photoreceiver,’ IEEE Trans. Electron Device, vol. 43, no. 3, pp. 411-416, Mar. 1996.
[8] S. M. Csutak, J. D. Schaub, W.E.Wu, R. Shimer, and J. C. Campbell, “High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology,’ J. Lightw. Technol., vol. 20, no.9, pp. 1724-1729, Sep.2002.
[9] J. Schaub, R. Li, S. M. Csutak, and J. C. Campbell, “High-speed monolithic silicon photo-receivers on high resistivity and SOI substrates,” J. Lightw. Technol., vol. 19, no.7, pp.272-278, Feb. 2001.
[10] H. Zimmermann and M. Muller, “Ultralow-capacitance lateral p-i-n photodiode in a thin c-Si film,” IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp. 2032-2036, Aug. 2002.
[11] T. Miyata, et al., “correction of the intensity-dependent phase delay in a silicon avalanche photodiode by controlling its reverse bias voltage,” IEEE J. Quantum Electron., vol. 39, no. 7, pp. 919-923, Jul. 2003.
[12] J. C. Campbell, “Phototransistors for lightwave communications,” in Semiconductors and Semimetals, 1985, pt. D, vol. 22, ch. 5, pp. 389-447.
[13] H. Kamitsuna, Y. Matsuoka, S. Yamahata, and N. Shigekawa, “Ultrahigh-speed Inp-InGaAs DHPTS for OEMMIC,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1921-1925, Oct. 2001.

無法下載圖示 全文公開日期 2013/06/20 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE