簡易檢索 / 詳目顯示

研究生: 張雯琳
Wen-lin Chang
論文名稱: 觸控行動電話螢幕鍵盤之按鍵尺寸與間距大小對操作準確性之影響
Effects of Button and Gap Sizes on Task Accuracy for Keyboard of Touch Sensitive Mobile Phone
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 吳志富
Chih-Fu Wu
唐玄輝
Hsien-Hui Tang
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 126
中文關鍵詞: 行動電話觸控螢幕虛擬鍵盤使用性評估準確性
外文關鍵詞: Mobile phone, Touch screen, Virtual keyboard, Usability evaluation, Accuracy
相關次數: 點閱:241下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於觸控技術的成熟,觸控技術運用在行動裝置上的比重越來越重。行動電話則是行動裝置中最成熟也最多人使用的裝置。本研究目的針對觸控行動電話鍵盤介面的使用性進行研究,探討影響觸控行動電話螢幕鍵盤介面準確性因素,並進一步探討影響介面準確性因素是否影響使用者的體驗感受,以改善目前觸控行動電話螢幕鍵盤之介面設計,提昇使用者的滿意度。先探討目前手機上所使用的各式鍵盤設計以及輸入方式,在使用上是否有改善的空間,再透過現行軟體的比較,探討影響鍵盤輸入準確度之因素。並了解使用者的偏好以分析可供改善的變因。以期能供使用者能夠在輸入文字時,獲得更好的使用經驗。
本研究包含兩部分實驗:(1)現有的觸控行動電話螢幕鍵盤介面調查:了解觸控行動電話螢幕鍵盤介面之問題,包含操作介面之按鍵排列、現有輸入法對鍵盤介面設計的限制與影響,並透過訪談了解使用者的偏好與尋求介面設計上之建議;(2)驗證實驗:將前階段之結果,同時整理歸納相關文獻研究,進行驗證實驗。驗證實驗採3(按鍵大小)x 3(間距大小)雙因子受測者內實驗之方式進行。「按鍵大小」之變項共有三層級:(a)按鍵長寬為4公釐大小,按鍵長寬為6公釐大小以及按鍵長寬為8公釐大小。而「間距大小」分為三層級:(a)間距為0公釐:意指按鍵及按鍵之間沒有間隔;(b)間距為1公釐:間距為1公釐,表示各邊寬向內縮0.5公釐;(c)間距為2公釐:間距為2公釐,表示各邊寬向內縮1公釐。透過實驗可獲得操作績效與使用者主觀評量之結果。
研究所獲結果如下:(1)觸控手機使用者對鍵盤設計偏好與非觸控手機使用者的偏好不同。前者偏好與平日使用的鍵盤相似的設計;後者偏好按鍵尺寸較大的設計;(2)「按鍵大小」在「落點偏移量」及「錯誤率」上皆有顯著差異,按鍵尺寸較大者「落點偏移量」及「錯誤率」皆較小尺寸的按鍵來的低;(3)「間距大小」會影響使用者對「按鍵大小」的判斷,在相同尺寸及按鍵數量的範圍裡,有間距的鍵盤設計對使用者來說就是按鍵較小的設計;(4)使用者偏好有「間距」的設計,但對操作準確性的影響程度不若「按鍵大小」來的重要;(5)使用者主觀認為按鍵較小時,會因專心操作任務,所以有較高準確性。但根據績效分析結果,按鍵為8公釐時「落點偏移量」及「錯誤率」皆為最低。可見得使用者的主觀判斷並非事實,鍵盤設計仍應以如何使按鍵視覺上最大化為主要目標。(6)單顆按鍵感應範圍在寬度6公釐以下時,建議鍵盤的間距設計越小越好,以提高操作準確性。若按鍵感應範圍在寬度6公釐以上時,間距大小可以調寬,但建議保持單顆按鍵大小的寬度在6公釐以上,避免降低操作準確性。


As the touch screen technology becomes mature, it has applied in mobile devices increasingly. Cell phones are the most sophisticated and widely used mobile devices. The purpose of this study is to explore the touch screen keyboard usability of the mobile phone, and to investigate the factors that may impact the keyboard accuracy. This study is intended to conduct an experiment to examine if these factors may impact the keyboard accuracy of the touch screen mobile phone, and if they impact users’ feelings. In the end, the current touch-screen keyboard design and user satisfaction can be improved. Firstly, the author collected the current mobile phone keypad design and input methods to seek the potential improvement opportunity. Secondly, through the comparison of existing interface usability to explore the factors influencing keyboard input accuracy. This study also tries to understand the users’ preferences in order to analyze the changes for improvement and help improve better typing experience.
There are two stages in the experiment including: (1) The first stage is a survey on current mobile phone designed with touch screen keyboard interface. That is, to gather the mobile phone touch-screen keyboard interface relevant design issues including the interface of the button arrangement, the keyboard input method limitations and impacts, and understand users’ preferences and interface design preferences through interviews; (2) The second stage is about verification experiment. That is to summarize the results generated from the previous stage and relevant literatures for the verification experiment. The verification experiment is a 3 (button size) x 3 (gap size) two-factor within-subjects experiment design. In terms of the "button size" variable, there are three levels: (a) button length and width of 4 mm size, 6 mm size and 8 mm size. In addition, the "gap size" variable is also divided into three levels: (a) spacing of 0 mm: no gap between buttons; (b) spacing of 1 mm: reduced 0.5 mm width of each side inward; (c) spacing of 2 mm: reduce 1 mm width of each side inward. Users’ task performance and subjective assessment data are collected through experiments for statistical analyses.
The study results are as follows: (1) Touch screen phone users and non-touch screen phone users have different preferences. The former prefers to the design that is similar to their current phone; non-touch phone users prefer a larger size button design; (2) "Button size" has significant differences on "placement offset" and "error rate". Larger buttons have a lower "offset placement" and "error rate" value; (3) "Gap size" affects the users' judgement of button size and number of buttons; (4) Users prefers to have "gaps" on the keyboard design, but the major influencing factor is "button size"; (5) Users mentioned when the buttons are small, they are forced to concentrate on the required tasks, so the accuracy should be higher. However, according to the analysis of performance results, the 8mm button has the lowest "impact point offset" and "error rate" value. The results show the user's subjective judgments are not consistence; the keyboard design should focus on how to maximize the visual button size. (6) When the single button sensing area is less 6 mm width, the proposed design of the keyboard gap spacing should be as small as possible to improve the touch accuracy. When the single button sensing area is larger than 6mm width, the gap spacing can be adjusted wider. It is recommended to keep the button size visually larger than 6 mm width to increase touch accuracy.

摘 要 第一章 緒論 1.1 研究背景 1.2 研究動機 1.3 研究目的 1.4 研究架構跟流程 1.5 研究範圍及限制 第二章 文獻探討 2.1 觸控面板技術 2.2 觸控面板感應原理 2.3 觸控誤差 2.4 觸控準確性研究歸納 2.5 相關領域研究歸納 2.5.1 使用性 2.5.2 使用性評估 2.6 現有行動電話鍵盤設計 2.6.1 硬體鍵盤設計 2.6.2 軟體鍵盤設計 第三章 研究方法 3.1 研究方法與步驟 第四章 前導性實驗-現有觸控鍵盤介面設計調查 4.1 前導性實驗受測樣本及實驗設備 4.1.2 實驗設備:HTC的 Diamond 2,3.2吋觸控螢幕。 4.2 前導性實驗設計 4.3 前導性實驗對象 4.4 前導實驗結果 4.4.1 問卷結果 4.4.2 實驗結果-操作績效分析 第五章 模擬實驗結果與分析 5.1 模擬實驗方法 5.1.1 模擬實驗研究變項 5.1.2 驗證實驗介面製作 5.1.3 驗證實驗設備 5.1.4 驗證實驗問卷設計 5.1.5 驗證實驗步驟 5.1.6 驗證實驗對象 5.2 驗證實驗結果 5.2.1 落點偏移量分析 5.2.2 按鍵錯誤率 5.3 總結 第六章 結論與建議 6.1 研究結果 6.1.1 問卷及訪談結果 6.1.2 按鍵「實際位移偏移量」與「錯誤率」分析 6.2 設計建議 6.3 後續發展建議

1. 台灣觸控資訊網(2009年4月20日)。觸控簡介。取自 http://vip88.myweb.hinet.net/ttis/04.htm
2. 李青蓉、魏丕信、施郁芬、邱昭彰 (1998)。人機介面設計。台北:國立空中大學。
3. 吳智豪 (2003)。個人數位助理之視窗操作介面發展(未出版碩士論文)。國立成功大學,台南。
4. 卓耀宗(譯) (2000)。設計心理學(原作者:Norman, D. A.)。台北:遠流出版。(原著出版年:1988)
5. 柏德葳 (2010)。2010年觸控面板技術與市場未來趨勢。臺北:拓墣科技股份有限公司。
6. 黃俊然 (2001)。PDA平台上產品展示網頁的頁面配置與導覽列位置之實用性研究(未出版碩士論文)。大同大學,台北。
7. 黃中宏 (2003)。PDA小螢幕圖示配置與資訊呈現視認性之相關研究(未出版碩士論文)。東海大學,台中。
8. 劉明強 (2002)。軟硬體介面互動性探討-以行動電話為例(未出版碩士論文)。國立交通大學,新竹。
9. 歐陽國安 (2005)。圖形化介面設計對使用者辨識能力影響之研究:知覺組織理論之應用(未出版碩士論文)。義守大學,高雄。
10. Zol(2009年4月20日)。Samuel Hurst觸控螢幕之父 歷史發明回顧【中訊網路】。取自http://mobile.reesun.com/04/2008/0906/content_1678_1.html
11. Beringer, D.B. and Peterson, J.G., (1985) Underlying behavioral parameters of the operation of touch-input devices: Biases, models, and feedback, Human Factors, vol. 27 (4), 445-458.
12. BookRags (2009, Apr 20). Touch Screens, Retrieved from: http://www.bookrags.com/research/touch-screens-csci-02/
13. Brown, C. M. (1988). Human-Computer Interface Design Guidelines. Norwood, NJ: Ablex.
14. Flosi, S. L. (2010, May 5). comScore Reports November 2010 U.S. Mobile Subscriber Market Share. Retrieved from http://www.comscore.com/Press_Events/Press_Releases/2011/1/comScore_Reports_November_2010_U.S._Mobile_Subscriber_Market_Share
15. GSM Arena (2009, May 20). Retrieved from http://www.gsmarena.com/
16. Helander, G. M., Landauer, T. K., & Prabhu, V. P. (1997). Handbook of Human-Computer Interaction (2nd Eds.). Amsterdam, Netherlands:Elsevier.
17. ISO 9241-11:1998 (1998). Ergonomic requirements for office work with visual display terminals – Part 11: Guidance On Usability
18. Karlson A. K.& Bederson B. B. (2007). Thumbspace: Generalized one-handed input for touchscreen-based mobile devices. INTERACT'07 Proceedings of the 11th IFIP TC 13 international conference on Human-computer interaction (pp.324-338). New York, NY: ACM.
19. McManus, M. (2008, July 25). Touchscreen-equipped mobile handset shipments to exceed 230 million by 2012, says IMS Research. Retrieved from: http://www.digitimes.com/telecom/a20080725PR201.html
20. msdn (2009, Apr 20). Touch, Retrieved from: http://msdn.microsoft.com/En-Us/Library/Cc872774.Aspx
21. Nielsen, J. (1993). Usability Engineering. New York, NY: Academic Press Ltd.
22. Pekka. P., Karlson. K. A., & Bederson, B. B. (2006).Target size study for one-handed thumb use on small touchscreen devices. Mobilehci'06 Proceedings of the 8th conference on Human-computer interaction with mobile devices and services (pp.203). New York, NY: ACM.
23. Perry, B. K., & Hourcade, P. J. (2008). Evaluating one handed thumb tapping on mobile touchscreen devices. In Proceedings of Graphics Interface. (pp. 57-64). Toronto, Canada: Canadian Information Processing Society.
24. Quesenbery, W. (2003). Dimensions of Usability: Defining the Conversation, Driving the Process Proceedings of the UPA 2003 Conference, Retrieved from http://wqusability.com/articles/5es-upa2003.pdf.
25. Ren, X., & Moriya, S. (2000). Improving selection performance on pen-based systems: A study of pen-based interaction for selection tasks. ACM Transactions on Computer-Human Interaction. 7(3), 384-416.
26. Tudor, B. & Pettey, C. (2010, December 5). Gartner Says Worldwide Mobile Phone Sales Grew 35 Percent in Third Quarter 2010; Smartphone Sales Increased 96 Percent. Retrieved from http://www.gartner.com/it/page.jsp?id=1466313
27. Vogel, D. & Baudisch, P. (2007). Shift: a technique for operating pen-based interfaces using touch. In Proceedings of CHI 2007 (pp.657-666). New York, NY: ACM.
28. Wikipedia (2009, Apr 20). Touchscreen. Retrieved from: http://en.wikipedia.org/wiki/Touchscreen
29. Wikipedia (2010, May 5). Pangram. Retrieved from http://en.wikipedia.org/wiki/Pangram

QR CODE