簡易檢索 / 詳目顯示

研究生: 林豐平
Feng-Ping Lin
論文名稱: 高靈敏度的一維繞射感測器應用於反射雷射系統進行現場快速無標記鼠疫桿菌檢測
One-dimensional diffraction sensors with high sensitivity for on-site rapid label-free plague diagnosis with a reflective laser detection system
指導教授: 陳建光
Jem-Kun Chen
口試委員: 高治華
Jyh-Hwa Kau
劉正哲
Cheng-Che Liu
李榮和
Rong-Ho Lee
黃智峯
Chih-Feng Huang
周百謙
Pai-Chien Chou
郭紹偉
Shiao-Wei Kuo
鄭智嘉
Chih-Chia Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 143
中文關鍵詞: 一維繞射感測器鼠疫桿菌檢測極限原子轉移自由基聚合多聚甲基丙烯酸胰蛋白酶繞射階數膠體滲透層析儀
外文關鍵詞: One-dimensional diffraction grating sensors, Yersinia pestis, Limit of detection, Label-free, PMAA, Trypsin, Gel Permeation Chromatography, diffraction orders
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究對於疑似新興傳染病、生物病原恐怖攻擊或感染急症之快速檢測,所進行之技術開發與應用研究,由於高傳染病的感染診斷一般需要將病患檢體送至微生物實驗室進行培養與核酸檢測,雖然市面上有部分快篩試劑產品,檢測靈敏度不足始終是最大的問題,因此開發現場可執行之高傳染性病原快速且靈敏度高的檢測方法是相當重要且迫切需要,可即時為患者提供適切的治療,並立即採取必要的感染管控措施,避免疫情擴散。我們建置一個簡單的方法可在採樣現場直接快速檢測血液檢體當中的病原,以解決目前現行檢測方法需要將檢體送入實驗室進行微生物培養與分析的不便性,首先利用鼠疫桿菌(Yersinia pestis)作為偵測標的物以確認方法的可行性,發現此法對於偵測鼠疫桿菌而言呈現高靈敏度,檢測極限可達100 CFU/mL,線性範圍很廣在102~107 CFU/mL之間。在此研究中我們採用自製的一維繞射感測器(one-dimensional diffraction grating sensor,簡稱ODGs),即線型生物矽晶片,並以聚多甲基丙烯酸(PMAA)刷的頂端連接抗體,抗體可專一性地抓取目標病原體,不會抓取其他細胞或病原體,操作方式是將血液檢體滴加到一維繞射感測器上,將雷射光以45°的角度射入,並測量其反射繞射的強度,當晶片上有特定病原體存在時,反射繞射的強度會降低。我們發現當雷射光照射入晶片,且雷射光方向與溝槽平行,使雷射投影到晶片平面上時,在這樣的配置下偵測靈敏度更高。另外,2D和3D反射繞射的特點則是繞射階數的角度和振幅表現出對稱和不對稱的特性,這取決於晶片的方向,因此,可依雷射強度的變化作為特定病原體存在的指標。使用一維繞射感測器偵測微生物病原的優勢是僅需病原的專一性抗體,無需搭配任何螢光標記,儀器可輕易攜帶到實驗室以外的場域進行分析,且整個操作反應時間小於1小時。
    另外,我們製作具有線陣列的一維繞射光柵晶片,透過乙基(二甲氨基丙基)碳二亞胺(EDC)和N-羥基琥珀醯亞胺(NHS)即EDC/NHS反應,將明膠(gelatin)選擇性地固定在具有2微米解析度的光刻模板溝槽陣列的醯胺基改質的基底上。已固定明膠的線陣列經過溴化後產生可用於原子轉移自由基聚合(ATRP)的大分子起始劑,再從大分子起始劑這一層開始接枝Poly(methacrylic acid) (PMAA)形成高分子刷線陣列。在接枝PMAA的不同聚合時間中,以雷射光束系統分析晶片,沿橫向磁極化(TE)和逆向電極化(TM) 45°分析觀察繞射效應的光學特徵,我們發現PMAA線陣列矽晶片隨著時間PMAA生長而增加了線刷的高度和寬度,導致反射繞射強度出現變化。通過用胰蛋白酶(trypsin)分解明膠,將不同接枝聚合時間下的PMAA刷從晶片基質上裂解下來,並通過膠體滲透層析儀分析它們的分子量。發現當PMAA分子刷的分子量在135到1475 kDa範圍下,PMAA刷的分子量與繞射強度的變化程度呈現線性關係,且相關係數高。使用反射繞射強度判斷聚合物刷分子量的測定方式,無需斷裂聚合物刷,提供可即時監測分子刷生長的簡單方法。


    The focus of this dissertation is the applied research and development for rapid diagnosis of emerging infectious diseases, bioterrorism agents and acute and severe infectious diseases. Diagnosing potential contagious infections typically requires transporting patient specimens to microbiological laboratories for microorganism culture and/or molecular diagnosis. Although commercial rapid test kits (LFA) are available, their sensitivity is unsatisfactory. Therefore, a rapid and highly sensitive test at the point of care is important and urgently needed for the timely care of patients as well as for controlling the spread of infectious diseases. This research addresses the shortcomings of the methods widely used for detecting pathogens in human blood specimens, including their dependency on transporting the specimens to labs for microbial culture and analysis, and in response introduces herein a simple method that can deliver results quickly at the point of care. Through experiments with Yersinia pestis, the pathogen for plague, the method was shown to be highly sensitive, with LOD at 102 CFU/mL and linearity range between 102–107 CFU/mL. On the other hand, the LOD of immunofluorescence assay, commonly considered sensitive, but hardly to 103 CFU/mL, Moreover lower concentration would be undetectable under fluorescent microscopes. Major steps of the method include adding the specimens onto one-dimensional diffraction grating sensors (ODGs) made in-house, shining laser at them, and measuring the loss in the intensity of the reflective diffraction pattern caused by the presence of pathogen captured by its specific antibody, which was attached to the tip of the poly(methacrylic acid) (PMAA) brushes of the ODGs. The configuration for optimal sensitivity was found to be orienting the chip to align its trenches with the laser beam at 45-degree incident angle. Depending on the orientation, the diffraction orders’ angles and amplitudes exhibited symmetric and asymmetric properties, characteristic of the two- and three-dimensional reflective diffraction. The specific pathogen, if present, would be captured by the specific antibody and lead to the reduction in intensity of the diffraction orders. The advantages of detecting pathogenic microbes using diffraction grating include that the system only requires the specific antibody for the pathogen, is label-free for fluorescence and enzymes, and easily carried to point-of-care, where test results can be available within minutes of specimen collection.
    The change in reflective diffraction intensity, as observed by analyzing the optical feature of the characteristic diffraction effect produced by shining a laser beam along the transverse magnetic and transverse electric polarization at 45° incident angle, was affected the heights and widths of the PMAA brush lines, which grew with grafting polymerization time. To monitor the growth without polymer brush cleavage, the molecular weights of the PMAA brushes were measured instead. It was made possible with a simple process: Selectively immobilize gelatin on the bottom, which were treated with ethyl(dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide reaction, of the trench array of a 2 μm resolution photoresist template. The gelatin-immobilized line array was brominated to produce a layer macroinitiator for atom transfer radical polymerization, to which PMAA brushes were grafted to form line arrays of one-dimensional diffraction gratings (DGs). After various polymerization time, the PMAA brushes were cleaved from the substrate by digesting gelatin with trypsin and weighted by gel permeation chromatography (GPC). The molecular weight of the PMAA brushes, within a wide range from 135 to 1475 KDa, was found to be highly correlated linearly with the change in diffraction intensity.

    中文摘要 iii 英文摘要 vi 誌謝 ix 目錄 x 圖目錄 xvi 表目錄 xix 第壹章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 2 第貳章 文獻回顧 4 2.1 傳染病原簡介 4 2.1.1. 鼠疫桿菌 (Yersinia pestis,Yp) 4 2.1.2. 炭疽桿菌 (Bacillus anthracis, BA) 9 2.1.3. 伊波拉病毒(Ebola virus) 12 2.1.4. 嚴重急性呼吸道症候群冠狀病毒2型 15 2.2 高分子刷 17 2.3 自組裝單分子層 23 2.4 繞射光柵(diffraction grating, DG) 23 2.5 智能型高分子(Smart polymers) 26 2.6 EDC/NHS 反應 28 第參章 實驗方法 30 3.1 實驗流程圖 30 3.2 鼠疫桿菌檢測實驗 31 3.3 分子量檢測實驗 33 3.4 實驗藥品 35 3.5 實驗儀器 38 3.6 儀器簡介 41 3.6.1 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 41 3.6.2 傅立葉轉換紅外光光譜儀(Fourier Transform Infrared Spectroscope, FT-IR) 42 3.6.3 膠體滲透層析儀(Gel Permeation Chromatograph, GPC) 43 3.7 實驗步驟 46 3.7.1 微影製程製備光阻層矽晶片 46 3.7.2 蝕刻製程製備圖案化矽晶片 48 3.7.3 繞射光柵矽晶片表面聚合高分子刷 49 3.7.3.1 矽晶片表面親水性處理 49 3.7.3.2 表面APTES自組裝層 49 3.7.3.3 表面固定ATRP起始劑 50 3.7.3.4 表面接枝PMAA高分子刷 51 3.7.4 表面改質蛋白G 52 3.7.5 鼠疫桿菌及其他菌株 52 3.7.6 細菌培養與計數 53 3.7.7 去活化細菌之製備 53 3.7.8 血球細胞附著分析 53 3.7.8.1 白血球懸浮液製備 53 3.7.8.2 白血球粘附與雷射光學分析 54 3.7.8.3 白血球固定與染色 54 3.7.9 鼠疫桿菌捕捉與雷射光學檢測 55 3.7.9.1 鼠疫桿菌檢測試片之製作 55 3.7.9.2 鼠疫桿菌檢測分析與雷射光學檢測 55 3.7.10 免疫螢光染色 56 3.7.11 利用鼠疫桿菌檢測血液檢體的靈敏度分析 56 3.7.12 利用大腸桿菌檢測血液檢體的特異性分析 57 3.7.13 鼠疫桿菌免疫側流分析法 57 3.7.14 繞射光柵矽晶片的光學分析 58 3.7.14.1 雷射測定PMAA刷 58 3.7.14.2 TE和TM偏振模式繞射光柵的圖案 59 第肆章 結果與討論 61 4.1 光阻矽晶片製作 61 4.2 繞射光柵矽晶片表面分析 61 4.2.1 線型矽晶片表面分析 61 4.2.2 表面接枝PMAA刷長度分析 62 4.2.3 以AFM分析表面之高分子刷 63 4.3 表面雷射能量繞射效率測量分析 66 4.4 一維繞射感測器白血球貼附與螢光染色觀察 68 4.5 一維繞射感測器全血檢測雷射能量損失最佳化 69 4.6 一維繞射感測器進行鼠疫桿菌檢測的靈敏度分析(Analytical sensitivity of Yp assay using line biochips) 71 4.7 免疫螢光染色確認鼠疫桿菌與ODGs一維繞射感測器之作用 73 4.8 用一維繞射感測器進行鼠疫桿菌檢測與其他檢測方法的分析比較(Comparisons with other assays) 74 4.9 反射雷射一維繞射光柵矽晶片表面接枝高分子刷應用在分子量測定 77 4.9.1 XPS光譜分析表面特徵 77 4.9.2 以AFM分析表面高分子刷 78 4.9.3 表面接枝PMAA繞射效率測量 82 第伍章 結論 90 5.1 高靈敏度的一維繞射感測器(ODGs)應用於反射雷射系統進行現場快速無標記鼠疫桿菌檢測 90 5.2 一維繞射光柵接枝高分子刷其分子量簡易測定 92 參考文獻 93 附錄 123

    1.Born F, Braun P, Scholz HC, Grass G: Specific Detection of Yersinia pestis Based on Receptor Binding Proteins of Phages. Pathogens 2020, 9(8):611.
    2.Zasada AA, Formińska K, Zacharczuk K, Jacob D, Grunow R: Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Letters in Applied Microbiology 2015, 60(5):409-413.
    3.Bossi P, Tegnell A, Baka A, van Loock F, Werner A, Hendriks J, Maidhof H, Gouvras G: Bichat guidelines for the clinical management of plague and bioterrorism-related plague. Eurosurveillance 2004, 9(12):23-24.
    4.Mollaret HH: Fifteen centuries of yersiniosis. Contributions to Microbiology and Immunology 1995, 13:1-4.
    5.Vogler AJ, Keim P, Wagner DM: A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. Infection, Genetics and Evolution 2016, 37:21-36.
    6.Plague manual--epidemiology, distribution, surveillance and control. Relevé épidémiologique hebdomadaire 1999, 74(51-52):447.
    7.Gage KL, Kosoy MY: Natural history of plague: perspectives from more than a century of research. Annual Review of Entomology 2005, 50:505-528.
    8.Mayboroda O, Gonzalez Benito A, Sabate del Rio J, Svobodova M, Julich S, Tomaso H, O'Sullivan CK, Katakis I: Isothermal solid-phase amplification system for detection of Yersinia pestis. Analytical and Bioanalytical Chemistry 2016, 408(3):671-676.
    9.Zeng J-R, Cheng C-C, Lee A-W, Wei P-L, Chen J-K: Visualization platform of one-dimensional gratings of tethered polyvinyltetrazole brushes on silicon surfaces for sensing of Cr(III). Microchimica Acta 2017, 184(8):2723-2730.
    10.Perry RD, Fetherston JD: Yersinia pestis--etiologic agent of plague. clin microbiol infect 1997, 10(1):35-66.
    11.Pohanka M, Skládal P: Bacillus anthracis, Francisella tularensis and Yersinia pestis. The most important bacterial warfare agents — review. Folia Microbiologica 2009, 54(4):263-272.
    12.Vogler AJ, Chan F, Nottingham R, Andersen G, Drees K, Beckstrom-Sternberg SM, Wagner DM, Chanteau S, Keim P: A Decade of Plague in Mahajanga, Madagascar: Insights into the Global Maritime Spread of Pandemic Plague. mBio 2013, 4(1):e00623-00612.
    13.Plague around the world, 2010–2015. Relevé épidémiologique hebdomadaire 2016, 91(8):89-93.
    14.Respicio-Kingry LB, Yockey BM, Acayo S, Kaggwa J, Apangu T, Kugeler KJ, Eisen RJ, Griffith KS, Mead PS, Schriefer ME et al: Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda. PLOS Neglected Tropical Diseases 2016, 10(2):e0004360.
    15.Shi L, Yang G, Zhang Z, Xia L, Liang Y, Tan H, He J, Xu J, Song Z, Li W et al: Reemergence of human plague in Yunnan, China in 2016. PLOS ONE 2018, 13(6):e0198067.
    16.Abedi AA, Shako J-C, Gaudart J, Sudre B, Ilunga BK, Shamamba SKB, Diatta G, Davoust B, Tamfum J-JM, Piarroux R et al: Ecologic Features of Plague Outbreak Areas, Democratic Republic of the Congo, 2004-2014. Emerging Infectious Diseases 2018, 24(2):210-220.
    17.Andrianaivoarimanana V, Piola P, Wagner DM, Rakotomanana F, Maheriniaina V, Andrianalimanana S, Chanteau S, Rahalison L, Ratsitorahina M, Rajerison M: Trends of Human Plague, Madagascar, 1998-2016. Emerging Infectious Diseases 2019, 25(2):220-228.
    18.Randremanana R, Andrianaivoarimanana V, Nikolay B, Ramasindrazana B, Paireau J, ten Bosch QA, Rakotondramanga JM, Rahajandraibe S, Rahelinirina S, Rakotomanana F et al: Epidemiological characteristics of an urban plague epidemic in Madagascar, August–November, 2017: an outbreak report. The Lancet Infectious Diseases 2019, 19(5):537-545.
    19.Riedel S: Plague: From Natural Disease to Bioterrorism. Baylor University Medical Center Proceedings 2005, 18(2):116-124.
    20.Greenfield RA, Bronze MS: Prevention and treatment of bacterial diseases caused by bacterial bioterrorism threat agents. Drug Discovery Today 2003, 8(19):881-888.
    21.Cunha B: Anthrax, tularemia, plague, ebola or smallpox as agents of bioterrorism: recognition in the emergency room. Clinical Microbiology Infection 2002, 8(8):489-503.
    22.Inglesby TV, Dennis DT, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, Fine AD, Friedlander AM, Hauer J, Koerner JF et al: Plague as a Biological WeaponMedical and Public Health Management. Journal of the American Medical Association 2000, 283(17):2281-2290.
    23.Gaval SR, Shrikhande SN, Makhija SK, Tankhiwale NS, Pathak AA, Saoji AM: Study of suspected plague cases for isolation and identification of Yersinia pestis. Indian Journal of Medical Sciences 1996, 50(12):335-338.
    24.Nunes MP, Suassuna I: Bacteriophage specificity in the identification of Yersinia pestis as compared with other enterobacteria. Revista Brasileira de Pesquisas Medicas e Biologicas 1978, 11(6):359-363.
    25.Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA: Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-time PCR. PLOS ONE 2010, 5(6):e11337.
    26.Chanteau S, Rahalison L, Ralafiarisoa L, Foulon J, Ratsitorahina M, Ratsifasoamanana L, Carniel E, Nato F: Development and testing of a rapid diagnostic test for bubonic and pneumonic plague. The Lancet 2003, 361(9353):211-216.
    27.Chanteau S, Rahalison L, Ratsitorahina M, Mahafaly, Rasolomaharo M, Boisier P, O'Brien T, Aldrich J, Keleher A, Morgan C et al: Early diagnosis of bubonic plague using F1 antigen capture ELISA assay and rapid immunogold dipstick. Int. J. Med. Microbiol. 290(3):279-283.
    28.Splettstoesser WD, Rahalison L, Grunow R, Neubauer H, Chanteau S: Evaluation of a standardized F1 capsular antigen capture ELISA test kit for the rapid diagnosis of plague. FEMS Microbiol. Immunol. 2004, 41(2):149-155.
    29.Hinnebusch J, Schwan TG: New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. J. Clin. Microbiol. 1993, 31(6):1511-1514.
    30.Tsukano H, Itoh K-I, Suzuki S, Watanabe H: Detection and Identification of Yersinia pestis by Polymerase Chain Reaction (PCR) Using Multiplex Primers. Microbiol. Immunol. 1996, 40(10):773-775.
    31.Iqbal SS, Chambers JP, Goode MT, Valdes JJ, Brubaker RR: Detection of Yersinia pestis by pesticin fluorogenic probe-coupled PCR. Mol. Cell. Probes, 2000, 14(2):109-114.
    32.Skottman T, Piiparinen H, Hyytiäinen H, Myllys V, Skurnik M, Nikkari S: Simultaneous real-time PCR detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26(3):207-211.
    33.Qu S, Shi Q, Zhou L, Guo Z, Zhou D, Zhai J, Yang R: Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis. PLOS Neglected Tropical Diseases 2010, 4(3):e629.
    34.Anderson GP, King KD, Cao LK, Jacoby M, Ligler FS, Ezzell J: Quantifying Serum Antiplague Antibody with a Fiber-Optic Biosensor. Clinical and Diagnostic Laboratory Immunology 1998, 5(5):609-612.
    35.Wei H, Zhao Y, Bi Y, Liu H, Guo Z, Song Y, Zhai J, Huang H, Yang R: Direct detection of Yersinia pestis from the infected animal specimens by a fiber optic biosensor. Sensors and Actuators B: Chemical 2007, 123(1):204-210.
    36.Yan Z, Zhou L, Zhao Y, Wang J, Huang L, Hu K, Liu H, Wang H, Guo Z, Song Y et al: Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators B: Chemical 2006, 119(2):656-663.
    37.Soergel ME, Schaffer FL, Blank HF: Solid-phase radioimmunoassay for detection of plague antigen in animal tissue. Journal of Clinical Microbiology 1982, 16(5):953-956.
    38.Engelthaler DM, Gage KL, Montenieri JA, Chu M, Carter LG: PCR Detection of Yersinia pestis in Fleas: Comparison with Mouse Inoculation. Journal of Clinical Microbiology 1999, 37(6):1980-1984.
    39.Campbell J, Lowe J, Walz S, Ezzell J: Rapid and specific identification of Yersinia pestis by using a nested polymerase chain reaction procedure. Journal of Clinical Microbiology 1993, 31(3):758-759.
    40.Pirjo Matero, Tanja Pasanen, Riikka Laukkanen, Päivi Tissari, Eveliina Tarkka, Martti Vaara,Mikael Skurnik: Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS 2009, 117(1):34-44.
    41Loïez C, Herwegh S, Wallet F, Armand S, Guinet F, Courcol RJ: Detection of Yersinia pestis in sputum by real-time PCR. Journal of Clinical Microbiology 2003, 41(10):4873-4875.
    42.Hsu H-L, Chuang C-C, Liang C-C, Chiao D-J, Wu H-L, Wu Y-P, Lin F-P, Shyu R-H: Rapid and sensitive detection of Yersinia pestis by lateral-flow assay in simulated clinical samples. BMC Infectious Diseases 2018, 18(1):402.
    43.Amoako KK, Shields MJ, Goji N, Paquet C, Thomas MC, Janzen TW, Bin Kingombe CI, Kell AJ, Hahn KR: Rapid Detection and Identification of Yersinia pestis from Food Using Immunomagnetic Separation and Pyrosequencing. Journal of Pathogens 2012, 2012:781652.
    44.Jeon J-W, Kim J-H, Lee J-M, Lee W-H, Lee D-Y, Paek S-H: Rapid immuno-analytical system physically integrated with lens-free CMOS image sensor for food-borne pathogens. Biosensors and Bioelectronics 2014, 52:384-390.
    45.Lim DV, Simpson JM, Kearns EA, Kramer MF: Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare. Clinical Microbiology Reviews 2005, 18(4):583-607.
    46.Koczula Katarzyna M, Gallotta A: Lateral flow assays. Essays in Biochemistry 2016, 60(1):111-120.
    47.Brachman PS, Gold H, Plotkin SA, Fekety FR, Werrin M, Ingraham NR: Field Evaluation of a Human Anthrax Vaccine. American Journal of Public Health and the Nation's Health 1962, 52(4):632-645.
    48.PCB T: Guidelines for the surveillance and control of anthrax in humans and animals. Geneva, Switzerland: World Health Organization, Department of Communicable Diseases Surveillance and Response, 1998; publication no. WHO/ EMC/ ZDI./98.6.
    49.Chen J-K, Chen T-Y: Fabrication of high-aspect-ratio poly (2-hydroxyethyl methacrylate) brushes patterned on silica surfaces by very-large-scale integration process. Journal of Colloid and Interface Science 2011, 355(2):359-367.
    50.Dixon T, Meselson M, Guillemin J: Anthrax. . New England Journal of Medicine 1999, 341(11):815-826.
    51.Pannifer AD, Wong TY, Schwarzenbacher R, Renatus M, Petosa C, Bienkowska J, Lacy DB, Collier RJ, Park S, Leppla SH et al: Crystal structure of the anthrax lethal factor. Nature 2001, 414(6860):229-233.
    52.Barth H, Aktories K, Popoff MR, Stiles BG: Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins. Microbiology and Molecular Biology Reviews 2004, 68(3):373-402.
    53.Feng W, Brash JL, Zhu S: Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: separate effects of graft density and chain length on protein repulsion. Biomaterials 2006, 27(6):847-855.
    54.Shoham D, Wolfson Ze: The Russian biological weapons program: vanished or disappeared? Critical Reviews in Microbiology 2004, 30(4):241-261.
    55.Jernigan DB, Raghunathan PL, Bell BP, Brechner R, Bresnitz EA, Butler JC, Cetron M, Cohen M, Doyle T, Fischer M et al: Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerging Infectious Diseases 2002, 8(10):1019-1028.
    56.Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD et al: Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proceedings of the National Academy of Sciences 2011, 108(12):5027-5032.
    57. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, Bendahman N, Hammers R: Naturally occurring antibodies devoid of light chains. Nature 1993, 363(6428):446-448.
    58. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF: A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995, 374(6518):168-173.
    59.Swanson ER, Fosnocht DE: Anthrax threats: A report of two incidents from salt lake city11Selected Topics: Disaster Medicine is coordinated by Irving “Jake” Jacoby, MD, of the University of California San Diego Medical Center, San Diego, California. The Journal of Emergency Medicine 2000, 18(2):229-232.
    60.Sastry KSR, Tuteja U, Santhosh PK, Lalitha MK, Batra HV: Identification of Bacillus anthracis by a simple protective antigen-specific mAb dot-ELISA. Journal of Medical Microbiology 2003, 52(1):47-49.
    61.Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW et al: Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proceedings of the National Academy of Sciences 2004, 101(22):8449-8454.
    62.Guglielmo-Viret V VN, Desor F, Thullier P: Combination of cultivation and lateral flow assay for easy, highly sensitive and presumptive detection of Bacillus anthracis spores. Journal of Medical Laboratory and Diagnosis, 2:51–53.
    63.Stopa PJ: The flow cytometry of Bacillus anthracis spores revisited. Cytometry 2000, 41(4):237-244.
    64.Zahavy E, Fisher M, Bromberg A, Olshevsky U: Detection of Frequency Resonance Energy Transfer Pair on Double-Labeled Microsphere and Bacillus anthracis Spores by Flow Cytometry. Applied and Environmental Microbiology 2003, 69(4):2330-2339.
    65.Tamborrini M, Holzer M, Seeberger PH, Schürch N, Pluschke G: Anthrax Spore Detection by a Luminex Assay Based on Monoclonal Antibodies That Recognize Anthrose-Containing Oligosaccharides. Clinical and Vaccine Immunology 2010, 17(9):1446-1451.
    66.Yu H: Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. Journal of Immunological Methods 1998, 218(1):1-8.
    67.Kuehn A, Kovác P, Saksena R, Bannert N, Klee SR, Ranisch H, Grunow R: Development of Antibodies against Anthrose Tetrasaccharide for Specific Detection of Bacillus anthracis Spores. Clinical and Vaccine Immunology 2009, 16(12):1728-1737.
    68.Tengelsen L, Hudson R, Barnes S, Hahn C: Coordinated response to reports of possible anthrax contamination, Idaho, 2001. Emerging Infectious Diseases 2002, 8(10):1093-1095.
    69.Chen J-K, Zhou G-Y, Chang C-J: Real-time multicolor antigen detection with chemoreponsive diffraction gratings of silicon oxide nanopillar arrays. Sensors and Actuators B: Chemical 2013, 186:802-810.
    70.https://www.cdc.gov.tw/Category/Page/xu0TsftFoC0jqv7jOA4jpw.
    71.Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez JP, Swanepoel R: Fruit bats as reservoirs of Ebola virus. Nature 2005, 438(7068):575-576.
    72.Briand S, Bertherat E, Cox P, Formenty P, Kieny M-P, Myhre JK, Roth C, Shindo N, Dye C: The International Ebola Emergency. New England Journal of Medicine 2014, 371(13):1180-1183.
    73.Jiang H, Xu F-J: Biomolecule-functionalized polymer brushes. Chemical Society Reviews 2013, 42(8):3394-3426.
    74.Chen J-K, Zhou G-Y, Huang C-F, Chang J-Y: Two-dimensional periodic relief grating as a versatile platform for selective immunosorbent assay and visualizing of antigens. ACS Applied Materials & Interfaces 2013, 5(8):3348-3355.
    75.Muyembe-Tamfum JJ, Mulangu S, Masumu J, Kayembe JM, Kemp A, Paweska JT: Ebola virus outbreaks in Africa: Past and present. Onderstepoort Journal of Veterinary Research 2012, 79:06-13.
    76.Francesconi P, Yoti Z, Declich S, Onek PA, Fabiani M, Olango J, Andraghetti R, Rollin PE, Opira C, Greco D et al: Ebola hemorrhagic fever transmission and risk factors of contacts, Uganda. Emerging Infectious Diseases 2003, 9(11):1430-1437.
    77.Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE: Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chemical Reviews 2014, 114(21):10976-11026.
    78.Bray M, Geisbert TW: Ebola virus: The role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. The International Journal of Biochemistry & Cell Biology 2005, 37(8):1560-1566.
    79.Ramanan P, Shabman RS, Brown CS, Amarasinghe GK, Basler CF, Leung DW: Filoviral Immune Evasion Mechanisms. Viruses 2011, 3(9):1634-1649.
    80.Li M, Fromel M, Ranaweera D, Rocha S, Boyer C, Pester CW: SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters 2019, 8(4):374-380.
    81.Chen J-K, Bai B-J: pH-switchable optical properties of the one-dimensional periodic grating of tethered poly (2-dimethylaminoethyl methacrylate) brushes on a silicon surface. The Journal of Physical Chemistry C 2011, 115(43):21341-21350.
    82.Leone G, Giovanella U, Bertini F, Hoseinkhani S, Porzio W, Ricci G, Botta C, Galeotti F: Hierarchically structured, blue-emitting polymer hybrids through surface-initiated nitroxide-mediated polymerization and water templated assembly. Journal of Materials Chemistry C 2013, 1(40):6585-6593.
    83.Parkes-Ratanshi R, Elbireer A, Mbambu B, Mayanja F, Coutinho A, Merry C: Ebola Outbreak Response; Experience and Development of Screening Tools for Viral Haemorrhagic Fever (VHF) in a HIV Center of Excellence Near to VHF Epicentres. PLOS ONE 2014, 9(7):e100333.
    84.Lubomirsky E, Khodabandeh A, Preis J, Susewind M, Hofe T, Hilder EF, Arrua RD: Polymeric stationary phases for size exclusion chromatography: A review. Analytica Chimica Acta 2021:338244.
    85.Gutiérrez P: Coronavirus map: how Covid-19 cases are spreading across the world. The Guardian. 2020.3.25.
    86.https://www.who.int/emergencies/diseases/novel-coronavirus-2019 WOU-CdC-pAo.
    87.Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R et al: A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 2020, 382(8):727-733.
    88.Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y et al: A new coronavirus associated with human respiratory disease in China. Nature 2020, 579(7798):265-269.
    89.Koh WC, Naing L, Chaw L, Rosledzana MA, Alikhan MF, Jamaludin SA, Amin F, Omar A, Shazli A, Griffith M et al: What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors. PLOS ONE 2020, 15(10):e0240205.
    90.Madewell ZJ, Yang Y, Longini IM, Jr, Halloran ME, Dean NE: Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA Network Open 2020, 3(12):e2031756-e2031756.
    91. Baud D, Qi X, Nielsen-Saines K, Musso D, Pomar L, Favre G: Real estimates of mortality following COVID-19 infection. The Lancet Infectious Diseases 2020, 20(7):773.
    92. Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D, Chen B, Zhang Z, Guan W, Ling Z et al: Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. European Journal of Nuclear Medicine and Molecular Imaging 2020, 47(5):1275-1280.
    93.Wu D, Wu T, Liu Q, Yang Z: The SARS-CoV-2 outbreak: what we know. International Journal of Infectious Diseases 2020, 94:44-48.
    94.Zhang T, Cui X, Zhao X, Wang J, Zheng J, Zheng G, Guo W, Cai C, He S, Xu Y: Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. Journal of Medical Virology 2020, 92(7):909-914.
    95.Oliveira BA, Oliveira LCd, Sabino EC, Okay TS: SARS-CoV-2 and the COVID-19 disease: a mini review on diagnostic methods. Revista do Instituto de Medicina Tropical de São Paulo 2020, 62.
    96.Mathuria JP, Yadav R, Rajkumar: Laboratory diagnosis of SARS-CoV-2 - A review of current methods. Journal of Infection and Public Health 2020, 13(7):901-905.
    97.Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Bleicker T, Brünink S, Schneider J, Schmidt ML et al: Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25(3).
    98.Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, Ng DYM, Wan CKC, Yang P, Wang Q et al: Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clinical Chemistry 2020, 66(4):549-555.
    99.Lee A-W, Cheng C-C, Chang C-J, Lu C-H, Chen J-K: Optical assay of trypsin using a one-dimensional plasmonic grating of gelatin-modified poly(methacrylic acid). Microchimica Acta 2020, 187(5):280.
    100.Chen J-K, Hsieh C-Y, Huang C-F, Li P-M, Kuo S-W, Chang F-C: Using solvent immersion to fabricate variably patterned poly (methyl methacrylate) brushes on silicon surfaces. Macromolecules 2008, 41(22):8729-8736.
    101.Milner ST: Polymer brushes. Science 1991, 251(4996):905-914.
    102.Ishihara K, Mitera K, Inoue Y, Fukazawa K: Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids and Surfaces B: Biointerfaces 2020, 194:111205.
    103.Chen J-K, Wang J-H, Cheng C-C, Ko F-H: Fabrication of biomimetic device with PS-b-PNIPAAm copolymer pillars mimicking a gecko foot pad. Sensors and Actuators B: Chemical 2012, 174:332-341.
    104.Chen J-K, Wang J-H, Cheng C-C, Chang J-Y, Chang F-C: Polarity-indicative two-dimensional periodic relief gratings of tethered poly (methyl methacrylate) on silicon surfaces for visualization in volatile organic compound sensing. Applied Physics Letters 2013, 102(15):151906.
    105.Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A: Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chemical reviews 2017, 117(3):1105-1318.
    106.Rizzardo E, Chiefari J, Chong BY, Ercole F, Krstina J, Jeffery J, Le TP, Mayadunne RT, Meijs GF, Moad CL: Tailored polymers by free radical processes. In: Macromolecular symposia: 1999: Wiley Online Library; 1999: 291-307.
    107.Chiefari J, Chong Y, Ercole F, Krstina J, Jeffery J, Le TP, Mayadunne RT, Meijs GF, Moad CL, Moad G: Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31(16):5559-5562.
    108.Fischer H: The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chemical Reviews 2001, 101(12):3581-3610.
    109.Goto A, Fukuda T: Kinetics of living radical polymerization. Progress in Polymer Science 2004, 29(4):329-385.
    110.Chong Y, Krstina J, Le TP, Moad G, Postma A, Rizzardo E, Thang SH: Thiocarbonylthio compounds in free radical polymerization with reversible addition-fragmentation chain transfer (raft polymerization). Role of the free-radical leaving group (r). Macromolecules 2003, 36(7):2256-2272.
    111.Moad G, Rizzardo E, Thang SH: Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008, 49(5):1079-1131.
    112.Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A: Grafting from surfaces for “everyone”: ARGET ATRP in the presence of air. Langmuir 2007, 23(8):4528-4531.
    113.Jakubowski W, Min K, Matyjaszewski K: Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 2006, 39(1):39-45.
    114.Siegwart DJ, Oh JK, Matyjaszewski K: ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science 2012, 37(1):18-37.
    115.Masci G, Bontempo D, Tiso N, Diociaiuti M, Mannina L, Capitani D, Crescenzi V: Atom transfer radical polymerization of potassium 3-sulfopropyl methacrylate: direct synthesis of amphiphilic block copolymers with methyl methacrylate. Macromolecules 2004, 37(12):4464-4473.
    116.Bouilhac C, Cloutet E, Taton D, Deffieux A, Borsali R, Cramail H: Block copolymer micelles as nanoreactors for single‐site polymerization catalysts. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47(1):197-209.
    117.Wang J-S, Matyjaszewski K: Controlled/" living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules 1995, 28(23):7901-7910.
    118.Lin CY, Coote ML, Gennaro A, Matyjaszewski K: Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization. Journal of the American Chemical Society 2008, 130(38):12762-12774.
    119.Matyjaszewski K: Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45(10):4015-4039.
    120.Rao KK, Rao KM: A Review on Radical Polymerization Used for Design and Development of Biomaterials” by NOVA Publications. Jan 2012. K.S.V.
    121.Ejaz M, Tsujii Y, Fukuda T: Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer 2001, 42(16):6811-6815.
    122.Biesalski M, Rühe J: Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface. Macromolecules 1999, 32(7):2309-2316.
    123.Zhao B, Brittain WJ: Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science 2000, 25(5):677-710.
    124.Kopf A, Baschnagel J, Wittmer J, Binder K: On the adsorption process in polymer brushes: a Monte Carlo study. Macromolecules 1996, 29(5):1433-1441.
    125.Zajac R, Chakrabarti A: Irreversible polymer adsorption from semidilute and moderately dense solutions. Physical Review E 1995, 52(6):6536.
    126.Macchione MA, Biglione C, Strumia M: Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polymers 2018, 10(5):527.
    127.Chen J-K, Zhuang A-L: Fabrication of a highly dense line patterned polystyrene brush on silicon surfaces using very large scale integration processing. The Journal of Physical Chemistry C 2010, 114(27):11801-11809.
    128.Xiang P, Petrie K, Kontopoulou M, Ye Z, Subramanian R: Tuning structural parameters of polyethylene brushes on silica nanoparticles in surface-initiated ethylene “living” polymerization and effects on silica dispersion in a polyolefin matrix. Polymer Chemistry 2013, 4(5):1381-1395.
    129.Chen J-K, Hsieh C-Y, Huang C-F, Li P-m: Characterization of patterned poly (methyl methacrylate) brushes under various structures upon solvent immersion. Journal of Colloid and Interface Science 2009, 338(2):428-434.
    130.Kang C, Crockett RM, Spencer ND: Molecular-weight determination of polymer brushes generated by SI-ATRP on flat surfaces. Macromolecules 2014, 47(1):269-275.
    131.Chen J-K, Zhou G-Y, Chang C-J, Lee A-W, Chang F-C: Label-free DNA detection using two-dimensional periodic relief grating as a visualized platform for diagnosis of breast cancer recurrence after surgery. Biosensors and Bioelectronics 2014, 54:35-41.
    132.Nuzzo RG, Allara DL: Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105(13):4481-4483.
    133.Huisman BH, Kooyman RP, van Veggel FC, Reinhoudt DN: Molecular recognition by self‐assembled monolayers detected with surface plasmon resonance. Advanced Materials 1996, 8(7):561-564.
    134.Schierbaum K, Weiss T, Van Veizen ET, Engbersen J, Reinhoudt D, Göpel W: Molecular recognition by self-assembled monolayers of cavitand receptors. Science 1994, 265(5177):1413-1415.
    135.Shon Y-S, Lee S, Colorado R, Perry SS, Lee TR: Spiroalkanedithiol-based SAMs reveal unique insight into the wettabilities and frictional properties of organic thin films. Journal of the American Chemical Society 2000, 122(31):7556-7563.
    136.Díaz DJ, Hudson JE, Storrier GD, Abruña HD, Sundararajan N, Ober CK: Lithographic applications of redox probe microscopy. Langmuir 2001, 17(19):5932-5938.
    137.Carvalho A, Geissler M, Schmid H, Michel B, Delamarche E: Self-assembled monolayers of eicosanethiol on palladium and their use in microcontact printing. Langmuir 2002, 18(6):2406-2412.
    138.Lopez GP, Biebuyck HA, Frisbie CD, Whitesides GM: Imaging of features on surfaces by condensation figures. Science 1993, 260(5108):647-649.
    139.Xu S, Miller S, Laibinis PE, Liu G-y: Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 1999, 15(21):7244-7251.
    140.Liu G-Y, Xu S, Qian Y: Nanofabrication of self-assembled monolayers using scanning probe lithography. Accounts of Chemical Research 2000, 33(7):457-466.
    141.Guo J-W, Huang B-R, Lai J-Y, Lu C-H, Chen J-K: Reversibly photoswitchable gratings prepared from azobenzene-modified tethered poly(methacrylic acid) brush as colored actuator. Sensors and Actuators B: Chemical 2020, 304:127275.
    142.Ren Z, Wang Y, Ma S, Duan S, Yang X, Gao P, Zhang X, Cai Q: Effective Bone Regeneration Using Thermosensitive Poly(N-Isopropylacrylamide) Grafted Gelatin as Injectable Carrier for Bone Mesenchymal Stem Cells. ACS Applied Materials & Interfaces 2015, 7(34):19006-19015.
    143.Huang J, Jiang L, Li X, Wei Q, Wang Z, Li B, Huang L, Wang A, Wang Z, Li M: Cylindrically Focused Nonablative Femtosecond Laser Processing of Long‐Range Uniform Periodic Surface Structures with Tunable Diffraction Efficiency. Advanced Optical Materials 2019, 7(20):1900706.
    144.Bai W, Spivak DA: A double‐imprinted diffraction‐grating sensor based on a virus‐responsive super‐aptamer hydrogel derived from an impure extract. Angewandte Chemie International Edition 2014, 53(8):2095-2098.
    145.Zeng J-R, Cheng C-C, Lee A-W, Wei P-L, Chen J-K: Visualization platform of one-dimensional gratings of tethered polyvinyltetrazole brushes on silicon surfaces for sensing of Cr (III). Microchimica Acta 2017, 184(8):2723-2730.
    146.Tian M, Huang Y, Li C, Lv M: High-performance humidity sensor based on a micro-nano fiber Bragg grating coated with graphene oxide. Optics Express 2020, 28(18):26395-26406.
    147.Zeng J-R, Cheng C-C, Chang C-J, Huang C-H, Chen J-K: Fabrication of two-dimensional photonic crystals of tethered polyvinyltetrazole on silicon surfaces for visualization in Cu2+ ion sensing. Dyes and Pigments 2017, 139:300-309.
    148.Huang J, Jiang L, Li X, Wei Q, Wang Z, Li B, Huang L, Wang A, Wang Z, Li M et al: Cylindrically Focused Nonablative Femtosecond Laser Processing of Long-Range Uniform Periodic Surface Structures with Tunable Diffraction Efficiency. Advanced Optical Materials 2019, 7(20):1900706.
    149.Chen J-K, Zhou G-Y, Chang C-J, Cheng C-C: Label-free detection of DNA hybridization using nanopillar arrays based optical biosensor. Sensors and Actuators B: Chemical 2014, 194:10-18.
    150.Chen W-T, Li S-S, Chu JP, Feng KC, Chen J-K: Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance. Biosensors and Bioelectronics 2018, 102:129-135.
    151.Taravati S, Eleftheriades GV: Generalized space-time-periodic diffraction gratings: Theory and applications. Physical Review Applied 2019, 12(2):024026.
    152.Inampudi S, Salary MM, Jafar-Zanjani S, Mosallaei H: Rigorous space-time coupled-wave analysis for patterned surfaces with temporal permittivity modulation. Opt Mater Express 2019, 9(1):162-182.
    153.Wang N, Zhang Z-Q, Chan CT: Photonic Floquet media with a complex time-periodic permittivity. Physical Review B 2018, 98(8):085142.
    154.Rabinovitch A, Biton Y, Braunstein D, Friedman M, Aviram I: Time-periodic lattice of spiral pairs in excitable media. Physical Review E 2012, 85(3):036217.
    155.Inampudi S, Salary MM, Jafar-Zanjani S, Mosallaei H: Rigorous space-time coupled-wave analysis for patterned surfaces with temporal permittivity modulation [Invited]. Optical Materials Express 2019, 9(1):162-182.
    156.Stayton PS, Shimoboji T, Long C, Chilkoti A, Chen G, Harris JM, Hoffman AS: Control of protein-ligand recognition using a stimuli-responsive polymer. Nature 1995, 378(6556):472-474.
    157.Bhuvana T, Kim B, Yang X, Shin H, Kim E: Reversible Full‐Color Generation with Patterned Yellow Electrochromic Polymers. Angewandte Chemie International Edition 2013, 52(4):1180-1184.
    158.Pasparakis G, Vamvakaki M: Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polymer Chemistry 2011, 2(6):1234-1248.
    159.Lu Y, Liu GL, Lee LP: High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Letters 2005, 5(1):5-9.
    160.Ho Y-H, Ting K-H, Chen K-Y, Liu S-W, Tian W-C, Wei P-K: Omnidirectional antireflection polymer films nanoimprinted by density-graded nanoporous silicon and image improvement in display panel. Optics Express 2013, 21(24):29827-29835.
    161.Hwang D-K, Lee B, Kim D-H: Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal. RSC Advances 2013, 3(9):3017-3023.
    162.Elliott JE, Macdonald M, Nie J, Bowman CN: Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer 2004, 45(5):1503-1510.
    163.Zohourian Mehr M.J.A.D., Kabiri K.: Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal 2008, 17(6): 451-447.
    164.Khutoryanskiy VV, Staikos G: Hydrogen-bonded interpolymer complexes: formation, structure and applications, World Scientific Publishing, 2009.
    165.Nurkeeva ZS, Khutoryanskiy VV, Mun GA, Sherbakova MV, Ivaschenko AT, Aitkhozhina NA. Polycomplexes of poly(acrylic acid) with streptomycin sulfate and their antibacterial activity. European Journal of Pharmaceutics and Biopharmaceutics. 2004 Mar;57(2):245-9.
    166.Lee A-W, Cheng C-C, Chang C-J, Lu C-H, Chen J-K: Optical assay of trypsin using a one-dimensional plasmonic grating of gelatin-modified poly (methacrylic acid). Microchimica Acta 2020, 187(5):1-8.
    167.Xu F, Yang X, Li C, Yang W: Functionalized polylactide film surfaces via surface-initiated ATRP. Macromolecules 2011, 44(7):2371-2377.
    168.Xu F, Wang Z, Yang W: Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 2010, 31(12):3139-3147.
    169.Costantini F, Benetti EM, Reinhoudt DN, Huskens J, Vancso GJ, Verboom W: Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity. Lab on a Chip 2010, 10(24):3407-3412.
    170.Bart J, Tiggelaar R, Yang M, Schlautmann S, Zuilhof H, Gardeniers H: Room-temperature intermediate layer bonding for microfluidic devices. Lab on a Chip 2009, 9(24):3481-3488.
    171.https://wpo-altertechnology.com/xps-x-ray-photoemission-spectroscopy-eee-parts/.
    172.Undavalli V, Ling C, Khandelwal B: Impact of alternative fuels and properties on elastomer compatibility. In., edn.; 2021: 113-132.
    173.https://microbenotes.com/gel-permeation-chromatography/.
    174.Lin F-P, Hsu H-L, Chang C-J, Lee S-C, Chen J-K: Surface lattice resonance of line array of poly (glycidyl methacrylate) with CdS quantum dots for label-free biosensing. Colloids and Surfaces B: Biointerfaces 2019, 179:199-207.
    175.Lacik I, Stach M, Kasak P, Semak V, Uhelska L, Chovancová A, Reinhold G, Kilz P, Delaittre G, Charleux B: SEC analysis of poly (acrylic acid) and poly (methacrylic acid). Macromolecular Chemistry and Physics 2015, 216(1):23-37.
    176.Weise W: Image formation of confocal microscopes using Lorentz's reciprocity theorem. Optics Communications 2002, 202(1-3):21-28.
    177.Mansuripur M: Trouble with the Lorentz law of force: Incompatibility with special relativity and momentum conservation. Physical Review Letters 2012, 108(19):193901.
    178.Dufil Y, Gadenne V, Carrière P, Nunzi J-M, Patrone L: Growth and organization of (3-Trimethoxysilylpropyl) diethylenetriamine within reactive amino-terminated self-assembled monolayer on silica. Applied Surface Science 2020, 508:145210.
    179.Semsarzadeh MA, Abdollahi M: Atom transfer radical polymerization of styrene and methyl (meth) acrylates initiated with poly (dimethylsiloxane) macroinitiator: Synthesis and characterization of triblock copolymers. Journal of Applied Polymer Science 2012, 123(4):2423-2430.
    180.Prabakaran K, Jandas P, Luo J, Fu C, Wei Q: Molecularly imprinted poly (methacrylic acid) based QCM biosensor for selective determination of L-tryptophan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 611:125859.
    181.Chaudhary J, Thakur S, Mamba G, Gupta RK, Thakur VK: Hydrogel of gelatin in the presence of graphite for the adsorption of dye: Towards the concept for water purification. Journal of Environmental Chemical Engineering 2021, 9(1):104762.
    182.Shandilya P, Mittal D, Soni M, Raizada P, Hosseini-Bandegharaei A, Saini AK, Singh P: Fabrication of fluorine doped graphene and SmVO4 based dispersed and adsorptive photocatalyst for abatement of phenolic compounds from water and bacterial disinfection. Journal of Cleaner Production 2018, 203:386-399.
    183.Arabi N, Zamanian A, Rashvand SN, Ghorbani F: The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromolecular Materials and Engineering 2018, 303(3):1700539.

    無法下載圖示 全文公開日期 2027/01/18 (校內網路)
    全文公開日期 2027/01/18 (校外網路)
    全文公開日期 2027/01/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE