簡易檢索 / 詳目顯示

研究生: 卜潘德
Bhupender
論文名稱: 含芳香族與烷烴混合物或含生物相容緩衝劑TRIS之丙醇水溶液的汽液平衡研究
Vapor-Liquid Equilibrium of Mixtures Containing Aromatics and Parafins or Aqueous Propanol Mixtures in the Presence of Biological Buffer TRIS
指導教授: 李明哲
Ming-Jer Lee
口試委員: 林河木
Ho-Mu Lin
林祥泰
none
李亮三
none
李夢輝
none
杜建勳
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: 汽液相平衡芳香族丙醇生物相容緩衝劑
外文關鍵詞: Aromatics, propanol
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在於量測汽液相平衡數據,本實驗分別量測壬烷(1)+環己烷(2)、壬烷(1)+苯(2)、壬烷(1)+甲苯(2)、壬烷(1)+對-二甲苯(2)、壬烷(1)+間-二甲苯(2)、壬烷(1)+庚烷(2)、庚烷(1)+鄰-二甲苯(2)、庚烷(1)+間-二甲苯(2)、辛烷(1)+鄰-二甲苯(2)、辛烷(1)+間-二甲苯(2)、甲苯(1)+鄰-二甲苯(2)、苯(1)+鄰-二甲苯(2)十二組雙成分在等壓力101.3 kPa下汽液相平衡數據。所有數據皆通過熱力學一致性測試而且沒有共沸物組成。實驗結果由UNIFAC與COSMO-RS預測模式來確定其有效性。這些新的汽液相平衡數據利用Wilson、NRTL與UNIQUAC活性係數模式來關聯。在之前的文獻中,我們發現一個典型的生化緩衝物TRIS可能適用在平移正丙醇與異丙醇的共沸水溶液。為了確認TRIS緩衝物在醇類(正丙醇及異丙醇)與水混合物中的影響,我們計算了正丙醇+水+TRIS及異丙醇+水+TRIS在TRIS不同濃度(0.02、0.04、0.08與0.12)下的等壓汽液相平衡數據。利用NRTL活性係數模式去關聯TRIS+水、TRIS+正丙醇及TRIS+異丙醇可得到新的雙成分交互作用參數。


    The isobaric vapor-liquid equilibrium (VLE) data were determined, by using a recirculation type apparatus, for the binary mixtures of nonane (1) + cyclohexane (2), nonane (1) + benzene (2), nonane (1) + toluene (2), nonane (1) + p-xylene (2), nonane (1) + m-xylene (2), nonane (1) + heptane (2), hexane (1) + o-xylene (2), hexane (1) + o-xylene (2), octane (1) + o-xylene (2), octane (1) + m-xylene (2), toluene (1) + o-xylene (2), and benzene (1) + o-xylene (2) at 101.3 kPa. All the data passed the thermodynamic consistency test and no azeotrope was formed in the investigated binary systems. The experimental results were used as a basis to check the validity of two predictive models, the UNIFAC and the conductor-like screening model for realistic solvents (COSMO-RS) models. These new VLE data were also correlated with the Wilson, the NRTL, and the UNIQUAC activity coefficient models. In the present study, we found that a common biological buffer Tris(hydroxymethyl)aminomethane (TRIS) is potentially applicable to shift the azeotrope of aqueous solutions of 1-propanol and 2-propanol. In order to confirmed the effect of TRIS buffer on vapor liquid equilibrium of alcohol (1-propanol and 2-propanol) and water mixture, we measure the the isobaric VLE data at 101.3 kPa for the 1-proponol + water + TRIS and 2-propanol + water + TRIS systems over for the azeotropic range for varying concentration of TRIS (0.02, 0.04, 0.08, and 0.12). The new binary interaction parameters were obtained for TRIS with water, TRIS with 1-propanol, and TRIS with 2-propanol by correlating the new VLE data with NRTL activity coefficient model.

    TABLE OF CONTENTS English Abstract 4 Chinese Abstract 4 Acknowledgements 4 Table of Contents 4 List of Figures 4 List of Tables 4 Nomenclatures 4 Chapter 1 Introduction 5 1.1 Hydrocarbons 5 1.2 Alcohols 5 1.3 Tris(Hydroxymethyl)Aminomethane (Tris) 5 1.4 Investigation on binary hydrocarbon systems 5 1.5 Investigation on alcohol, water and TRIS systems 5 1.6 Vapor– liquid phase equilibrium measurement 5 1.7 Scope of this study 5 1.8 Outline of the dissertation 5 Chapter 2 Experimental Section 5 2.1 Materials 5 2.2 Apparatus and experimental procedure 5 2.2.1 OTHMER RECIRCULATION STILL 5 2.2.2 MODIFIED OTHMER RECIRCULATION STILL 5 2.3 Sample analysis 6 Chapter 3 Phase Equilibrium Calculation 6 3.1 Vapor– liquid equilibrium 6 3.2 The vapor pressure of pure components 6 3.3 Solution models 6 Chapter 4 Results And Discussion 6 4.1 Experimental reliability test 6 4.2 Experimental results for investigated binary systems 6 4.2.1 THERMODYNAMIC CONSISTENCY TEST 6 4.2.2 CORRELATION AND PREDICTION 6 4.3 Experimental Results For Investigated Ternary Systems 6 Chapter 5 Conclusion 6 References 6

    References
    [1] Gomori, G. Preparation of Buffers for Use in Enzyme Studies. Methods Enzymol. 1955, 1, 138-146.
    [2] Knapp, S.; Rudiger, A.; Antranikian, G.; Landenstein, R. Crystallization and Preliminary Crystallographic Analysis of an Amylopullulanase from the Hyperthermophillic Archaeon Pyrococcus Woesei. Proteins 1995, 23, 595-597.
    [3] Kallet, R.; Jasmer, R.; Luce, J. The Treatment of Acidosis in Acute Lung Injury with Tris-hydroxymethyl Aminomethane (THAM). Am. J. Respir. Crit. 2000, 161, 1149–1153.
    [4] Park, J. Y.; Yoon, S. J.; Lee, H.; Yoon, J. H.; Shim, J. G.; Lee, J. K.; Min, B. Y.; Eum, H. M. Density, Viscosity, and Solubility of CO2 in Aqueous Solution of 2- Amino-2- hydroxymethyl - 1,3- propanediol. J. Chem. Eng. Data 2002, 47, 970- 973.
    [5] Park, J. Y.; Yoon, S. J.; Lee, H. Effect of Steric Hindrance on Carbon Dioxide Absorption into New Amine Solution: Thermodynamic and Spectroscopic Verification through Solubility and NMR Analysis. Environ, Sci. Technol. 2003, 37, 1670-1675.
    [6] Tournex, D. L.; Iliuta, I.; Iliuta, M. C.; Fradette, S.; Larachi, F. Solubility of CO2 in Acqueous Solution of 2- Amino-2- hydroxymethyl -1,3- propanediol. Fluid Phase Equilib. 2008, 268, 121-129.
    [7] Park, J. Y.; Yoon, S. J.; Lee, H.; Yoon, J. H.; Shim, J. G.; Lee, J. K.; Min, B. Y.; Eum, H.; Kang, M. C. Solubility of CO2 in Acqueous Solution of 2- Amino-2- ethyl -1,3- propanediol. Fluid Phase Equilib. 2002, 202, 359-366.
    [8] Gmehling, J.; Onken, U.; Arlt, W. DECHEMA Chemistry Data Series, Vapor–Liquid Equilibrium Data Collection, Vol. 1, Part 7, Frankfurt, 1980.
    [9] Harris, K. R.; Dunlop, J. Densities and Excess Volume of Mixture of Benzene with Chlorobenzene, Cyclohexane, n-Hexane, n-Heptane, and n-Octane at 298 K. J. Chem. Thermodyn. 1970, 2, 813-819.
    [10] Goral, M. Vapor–Liquid Equilibria in Non-polar Mixtures. III. Binary Mixtures of Alkylbenzenes and n-Alkane at 313.15 K. Fluid Phase Equilib. 1994, 102, 275-286.
    [11] Michishita, T.; Arai, Y.; Saito, S. Vapor–Liquid Equilibria of Hydrocarbons at Atmospheric Pressure. Kagaku Kogaku 1971, 35, 111-116.
    [12] Tripathi, R. P.; Asselineau, L. Isobaric Vapor–Liquid Equilibriums in Ternary System Benzene-n-Hepatane-Acetonitrile from Binary T-x Measurement. J. Chem. Eng. Data 1975, 20, 33-40.
    [13] Katayama, H.; Watanabe. I. Isobaric Vapor-Liquid Equilibriums of the n-Heptane-Toluene System at Sub Atmospheric Pressures J. Chem. Eng. Data 1980, 25,107-110.
    [14] Diaz, C.; Tojo, J. Phase Equilibria Behaviour of n-Heptane with o-Xylene, m-Xylene, p-Xylene and Ethylbenzene at 101.3 kPa. J. Chem. Thermodyn. 2002, 34, 1975–1984.
    [15] Chen, W. K.; Lee, K. J.; Ko, J. W.; Chang, C. M. J.; Hsiang, D.; Lee, L. S. Vapor–Liquid Equilibrium and Density Measurement for Binary Mixture of Toluene, Benzene, o-Xylene, m-Xylene, Sulfolane and Nonane at 333.15 K and 353.15 K. Fluid Phase Equilib. 2010, 287, 126-133.
    [16] Kirss, H.; Siimer, E.; Kuus, M.; Kudryavtseva, L. Isobaric Vapor-Liquid Equilibria in the System o-Xylene + Amyl Acetate + Nonane. J. Chem. Eng. Data 2001, 46, 147-150.
    [17] Huang, X.; Xia, S.; Ma, P.; Song, S.; Ma, B. Isobaric Vapor–Liquid Equilibria of N- Formylmorpholine with Toluene and Xylene at 101.3 kPa. J. Chem. Eng. Data 2008, 53, 252-255.
    [18] Boublik, T.; Benson, G. C. Molar Excess Gibbs free Energies of Benzene and m-Xylene Mixtures. Can. J. Chem. 1969, 47, 539-542.
    [19] Willman, B.; Teja, A. S. Vapor–Liquid Equilibria in Toluene + m-Xylene, Toluene + n-Decane, and n-Decane + m-Xylene Mixtures. J. Chem. Eng. Data 1985, 30, 116-119.
    [20] Diaz, C.; Tojo, J. Isobaric Vapor–Liquid Equilibria of the Binary Systems Cyclohexane with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 101.3 kPa. J. Chem. Eng. Data 2002, 47, 1154-1158.
    [21] Atkins, P. W. Physical Chemistry, fifth edition. Oxford University Press 1994, page 250.
    [22] Iliuta, M. C.; Thyrion, F. C. Effect of Calcium Chloride on the Isobaric Vapor-Liquid Equilibrium of 1-Propanol + Water. J. Chem. Eng. Data 1996, 41, 402-408.
    [23] Hashitani, M.; Hirata, M.; Hirose, Y. Salt Effect in Vapor–Liquid Equilibrium and Distillation with Salt (Three Ternary Systems: Ethanol-, i-Propanol-, n-Propanol-, Water-Calcium Chloride). Kagaku Kogaku 1968, 32, 182- 187.
    [24] Alvarez-Gomez, A. D.; Galan, M. C. J. Effect of Cobalt (II) Chloride on the Isobaric Vapor-Liquid Equilibrium of 1-Propanol + Water. Anal. Real. Soc. Esp. Fis. Chim. 1974, 10, 841-845.
    [25] Lin, C. L.; Lee, L. S.; Tseng, H. C. Phase Equilibria for 1-Propanol + Water + Sodium Chloride and Potassium Chloride and 2-Propanol + Water + Lithium Chloride and Lithium Bromide. J. Chem. Eng. Data 1993, 38, 306-309.
    [26] Morrison, J. F.; Baker, J. C.; Meredith, H. C.; Newman, K. E.; Walter, T. D.; Massle J. D.; Perry, R. L.; Cummings, P. T. Experimental Measurement of Vapor–Liquid Equilibrium in Alcohal/ Water/ Salt Systems. J. Chem. Eng. Data 1990, 35, 395-404.
    [27] Vercher, E.; Rojo, F. J.; Andreu, A. M. Isobaric Vapor–Liquid Equilibrium for 1-Propanol + Water + Calcium Nitrate. J. Chem. Eng. Data 1999, 44, 1216-1221.
    [28] Vercher, E.; Orchilles, V.; Vazquez, M. I.; Andreu, A. M. Isobaric Vapor–Liquid Equilibrium for 1-Propanol + Water + Lithium Chloride. Fluid Phase Equilib. 2004, 216, 47-51.
    [29] Gironi, F.; Lamberti, L. Vapor-Liquid Equilibrium Data for the Water- 2-Propanol System in the Presence of Dissolved Salt. Fluid Phase Equilib. 1995, 105, 273-286.
    [30] Sevgili, L. M.; Senol, A.; Isobaric (Vapor + Liquid) Equilibrium for (2-Propanol + Water + Ammonium Thiocyanate): Fitting the Data by an Empirical Equation. J. Chem. Thermodyn. 2006, 38, 1539-1545.
    [31] Furter, W.F; Cook, R. A. Salt Effect in Distillation: A Literature Review. Int. J. Heat Mass Transfer. 1967, 10, 23-26.
    [32] Herington, E. F. G. Tests for the Consistency of Experimental Isobaric Vapor–Liquid Equilibrium Data. J. Inst. Pet. 1951, 37, 457-470.
    [33] Van Ness, H., C.; Byer, S. M.; Gibbs, R. E. Vapor–Liquid Equilibrium. Part I. An Appraisal for Data Reduction Methods. AIChE J. 1973, 19, 238-244.
    [34] Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor–Liquid Equilibria Using UNIFAC; Elsevier: Amsterdam, 1977.
    [35] Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209-216.
    [36] Wilson, G. M. Vapor–Liquid Equilibrium XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127-130.
    [37] Renon, H.; Prausnitz, J. M. Local Composition in Thermodynamics Excess Function for Liquid Mixtures. AIChE J. 1968, 14, 135-144.
    [38] Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Energy of Partially or Completely Miscible Systems. AIChE J. 1975, 21, 116-128.
    [39] Klamt, A.; Eckert, F.; Diedenhofen, M. Prediction or Partition Coefficients and Activity Coefficients of Two Branched Compounds Using COSMOtherm. Fluid Phase Equilib. 2009, 285, 15-18.
    [40] Pineiro, M. M.; Garcia, J.; Cominges, B. E. D.; Vijande, J.; Valencia, J. L.; Legido, J. L. Densities and Surface Tension Variation with Temperature for n-Nonane + 1- Hexanol. Fluid Phase Equilib. 2006, 245, 32–36.
    [41] NIST Chemistry WebBook, NIST Standard Reference Database No. 69, National Institute of Standard and Technology, USA (http://webbook.nist.gov/chemistry/).
    [42] Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed., Wiley-Inter Science, New York, 1986.
    [43] Hiaki, T.; Taniguchi, A.; Tsuji, T.; Hongo, M. Isothermal Vapor–Liquid Equilibria of Octane with 1-Butanol, 2-Butanol, or 2-Methyl-2-propanol. Fluid Phase Equilib. 1998, 144, 145−155.
    [44] Marrufo, B.; Loras, S.; Sanchotello, M.; Isobaric Vapor–Liquid Equilibria for Binary and Ternary Mixtures with Cyclohexane, Cyclohexene, and Methyl Isobutyl Ketone at 100 kPa. J. Chem. Eng. Data 2010, 55, 5812–5817.
    [45] Dominguez, M.; Cea, P.; Lopez, M. C.; Royo, F.; Urieta, J. S. Isobaric VLE Data of the Binary Mixture (n-Hexane+ 1-Chlorobutane) and the Ternary System (1-Butanol + n-Hexane + 1-Chlorobutane) at 101.3 kPa. Fluid Phase Equilib. 1999, 164, 195-207.
    [46] TRC Thermodynamic Tables; Thermodynamics Research Center, Texas A&M University: College Station, TX, 1996.
    [47] Dreisbach, R. R. Physical Properties of Chemical Compounds; American Chemical Society: Washington, DC, 1955.
    [48] Othmer, D. F.; Composition of Vapor from Boiling Binary Solution. Ind. Eng. Chem. Annual, Ed. 1943, 35, p. 61
    [49] Shiah, I. M.; Yau, T. S.; Tseng, H. C. Vapor–Liquid Equilibrium of Water + Acetic Acid, and Water + Propionic Acid System Saturated with Sodium Chloride. J. Chin. Inst. Chem. Engrs. 2000, 31, 41-47.
    [50] Johnson, A. I.; Furter, W. F. Salt Effect in Vapor–Liquid Equilibrium. Can. J. Technol. 1957, 34, 413
    [51] Meranda, D.; Furter, W. F. Vapor–Liquid Equilibrium in Alcohal-Water Systems Containing Dissolved Halide Salt and Salt Mixtures. AIChE. J. 1972, 18, 111- 116.
    [52] Racket, H. G.; Equation of State for Saturated Liquids. J. Chem. Eng. Data 1970, 15, 514-517.
    [53] Yamada, T.; Gunn, R. D. Saturated Liquid Molar Volumes. Rackett Equation. J. Chem. Eng. Data 1973, 18, 234-236.
    [54] Britt, H. I.; Luecke, R. H. The Estimation of Parameters in Nonlinear Implicit Models. Technometrics 1973, 15, 233.
    [55] Gmehling, J.; Onken, U.; Arlt, W. DECHEMA Chemistry Data Series, Vapor-Liquid Equilibrium Data Collection, Vol. 1, Part 7, Frankfurt, 1980, p.287.
    [56] Gmehling, J.; Onken, U. DECHEMA Chemistry Data Series, Vapor-Liquid Equilibrium Data Collection, Vol. 1, Frankfurt, 1977, p.301.
    [57] Gmehling, J.; Onken, U. DECHEMA Chemistry Data Series, Vapor-Liquid Equilibrium Data Collection, Vol. 1, Frankfurt, 1977, p.313.

    無法下載圖示 全文公開日期 2017/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE