簡易檢索 / 詳目顯示

研究生: 李晟瑋
Cheng-wei Lee
論文名稱: 雙A臂式懸吊系統之最佳化設計-使用粒子群最佳化
Optimal Design of Double-Wishbone Type Suspension System Using Particle Swarm Optimization
指導教授: 呂森林
Sen-Lin Lu
口試委員: 廖崇禮
Chung-Li Liao
黃聰耀
Tsong-Yau Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 雙A臂式懸吊系統粒子群最佳化
外文關鍵詞: Double-Wishbone Type Suspension System, Particle Swarm Optimization
相關次數: 點閱:231下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要目的在最佳化之車輛懸吊系統,文中應用粒子群最佳化演算法(PSO)設計一雙A臂式懸吊系統以最小化車輛垂直加速度之均方值,以其作為乘適性的指標,設計變數包括:懸吊彈簧、懸吊阻尼、減震器安裝位置與控制臂長度。以懸吊行程與輪胎接觸力變化的限制條件做為懲罰函數。本最佳化執行流程,採逐次增加設計變數的方式進行,分別討論它們對乘適性與操控穩定性的影響。結果顯示,最佳化懸吊彈簧與懸吊阻尼可有效改善乘適性,但也會降低操控穩定性;而最佳化減震器安裝位置與控制臂長度僅能略為改善乘適性。


The main object of this thesis is to design an optimal vehicle suspension system. In the study the particle swarm optimization(PSO)is applied for the design of a Double-Wishbone type suspension system to minimize the mean square value of the vertical acceleration of the vehicle, which is an index of vehicle comfort. The design variables include the suspension spring constants, the suspension damping constants, the location of shock absorber, and the length of control arms.The constrained conditions of suspension travel and wheel contact force fluctuation which are related to the handling stability are added as the penalty functions. The optimization process are proceeded by increaseing the numbers of design variables one by one to discuss their influences on the ride comfort and handling stability of the vehicle. The results indicate that both the optimum suspension spring constant and the optimum suspension damping constant can improve the ride comfort effectively, but may reduce the handling stability. And the optimum location of shock absorber and the optimum length of control arms can only improve the ride comfort slightly.

摘 要 I ABSTRACT II 符號對照表 IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3 研究目的與動機 4 1.4 論文架構 5 第二章 系統架構與設計 6 2.1 四分之一車輛簡化模型 6 2.2 雙A臂式懸吊系統 8 2.2.1非線性模型 9 2.2.2 四分之一車輛簡化模型 10 2.2.3 運動學方程式推導 12 2.2.4 動力學方程式推導 18 第三章 粒子群最佳化演算法 26 3.1 粒子群最佳化 26 3.1.1 粒子群最佳化之發展背景 27 3.1.2 粒子群最佳化的基礎理論 27 3.1.3 粒子群最佳化的執行程序 28 3.1.4 粒子群最佳化運算流程 31 3.2 具隨機粒子與微調機制式粒子群最佳化 35 第四章 數值範例與討論 38 4.1 範例一:懸吊系統個別參數對車輛動態響應之影響 38 4.1.1參數設定 38 4.1.2 彈簧係數對車輛動態響應之影響 42 4.1.3 阻尼係數對車輛動態響應之影響 46 4.1.4 減震器安裝位置對車輛動態響應之影響 50 4.2 範例二:雙A臂式懸吊系統之最佳化設計 53 4.2.1 以懸吊彈簧與阻尼係數為設計變數為之懸吊系統最佳化設計 57 4.2.2以懸吊彈簧、阻尼係數與減震器安裝位置為設計變數之懸吊系統最佳化設計 61 4.2.3以懸吊彈簧、阻尼係數、減震器安裝位置與懸吊幾何形狀為設計變數之懸吊系統最佳化設計 65 第五章 結論與未來展望 69 5.1 結論 69 5.2 未來展望 70 參考文獻 71 作者簡介 76

[1] Appleyard, M. and Wellstead, P.E.,“Active suspensions: some background”,IEEE Proceedings: Control Theory and Applications, Vol.142, No. 2, pp. 123-128, 1995
[2] Gobbi, M. and Mastinu, G., “Analytical description and optimization of the dynamic behaviour of passively suspended road vehicles”, Journal of Sound and Vibration, Vol. 245, No. 3, pp. 457-481, 2001.
[3] Verros, G., Natsiavas, S., and Papadimitriou, C., “Design optimization of quarter-car models with passive and semi-active suspensions under random road excitation”, JVC/Journal of Vibration and Control, Vol. 11, No. 5, pp. 581-606, 2005.
[4] Wedig, W.V.,“Dynamics of half-car models under stochastic road 164 excitations”, American Society of Mechanical Engineers, Applied Mechanics Division, AMD, Washington, DC., United States, pp. 269-275, 2003.
[5] Thompson, A.G. and Davis, B.R., “RMS values of force, stroke and tyre deflection in a half-car model with preview controlled active suspension”, Vehicle System Dynamics, Vol. 39, No. 3, pp. 245-253,2003.
[6] Barak, P., Panakanti, N., and Desai, T., “Effect of chassis design factors (CDF) on the ride quality using a seven degree of freedom vehicle model”, SAE technical paper series, 2004.
[7] Pflughaupt, R.; Arnold, W.; Hellener, G., “Mounting arrangement for independent front wheel suspension of motor vehicles,” U. S. Patent 4,260,177, 1981.
[8] Hong, K.-S., Jeon, D.-S., and Sohn, H.-C., “A new modeling of the macpherson suspension system and its optimal pole-placement control”, Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel, 1999.
[9] Mukai, Y. ;Ueno, I.,“Vehicle suspension system,” U. S. Patent 4,570,968, 1986.
[10] Joo, D.S.,“Sliding mode neural network inference fuzzy logic controller of nonlinear active suspension system”, University of Detroit Mercyelectrical and computer engineering doctor, Detroit, MI, 1999.
[11] Joo, D.S., Al-Holou, N., Weaver, J.M., Lahdhiri, T., and Al-Abbas, F.,“Nonlinear modeling of vehicle suspension system”, Proceedings of the American Control Conference, Chicago, IL, USA, pp. 115-119, 2000.
[12] Thompson, A. G., “Quadratic performance indices and optimum suspension design” Pro. Instn. Mech. Engrs., Vol. 187, pp.129-139, 1973.
[13] Hac, A“Suspension optimization of a 2-dof vehicle model using A stochastic optimal contral technique”,Journal of Sound and Vibration,Vol. 100,No 3,pp343-357,Jun 8,1985.
[14] Elmadany, M. M. “Optimal linear active suspensions with multivariable integral control”,Vehicle System Dynamics,Vol.19,No.6, pp313-329,1990.

[15] Hrovat,D. “Applications of optimal control to advanced automotive suspension design,” Transactions of the ASME, Journal of Dynamic System, Measurement and Control, Vol. 115, No2, pp. 328-342, June 1993.
[16] Titli, A., Roukieh, S. and Dayre, E. “Three control approaches for The design of car semi-active suspension (optimal contral,variable structure control)”,Proceedings of the IEEE Conference on Decision and Control,Vol.3,pp2962-2963,1993.
[17] Zaremba , A., Kampo, R. and Hrovat, D. “Optimal active suspension design using constrained optimization”,Journal of Sound and Vibration,Vol.207,No.3,pp351-364,Oct 30,1997.
[18] Baumal, A.E., McPhee, J,J. and Calamai, P.H. “Application of genetic algorithms to design optimization of an active vechicle suspension system”,Computer Methods in Applied Mechanics and Engineering,Vol. 163,n 1-4,pp.87-94,Sep 21,1998.
[19] Potter, R. A., Willmert, K. D., “Optimum design of Vehicle Suspension System,” ASME 73-DET-46.
[20] Bender, E. K., Karnopp, D. C., and Paul, I. L., “On the optimization of vehicle suspensions using random process theory,” ASME 67-TRANS-12.
[21] Thompson, A. G., Pearce, C. E., “An optimal suspension for an auto- mobile on a random road,” SAE 790478.
[22] Gillespie, T.D., “Fundamentals of vehicle dynamics”, Warrendale, PA, Society of Automotive Engineers, 1992.

[23] 楊智麟,“簧下質量對車輛懸吊動態性能影響之分析”,碩士論文,國立台灣大學機械工程學研究所,2006。
[24] Kennedy, J. and Eberhart, R.C.“Particle swarm optimization”. Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, 1942-1948, Perth, Australia, IEEE, Piscataway, NJ, USA,1995.
[25] Reynolds, C. W.. “Flocks, herds, and Schools: A Distributed Behavioral Model (Proceedings of SIGGRAPH 1987).” Computer Graphics, Vol. 21, No. 4, pp. 24-34 1987.
[26] Eberhart, R.C. and Kennedy, J.“A new optimizer using particle swarm theory”. Proceedings of the 6th International Symposium on Micro Machine and Human Science, 39-43, Nagoya, Japan, IEEE, Piscataway, NJ, USA, 1995.
[27] Robinson, Jacob, Sinton, Seelig and Rahmat-Samii, Yahya.“Particle swarm, genetic algorithm, and their hybrids: Optimization of a profiled corrugated horn antenna” IEEE Antennas and Propagation Society, AP-S International Symposium, 314-317, San Antonio, TX, United States, nstitute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2002.
[28] Jong-Bae Park; Yun-Won Jeong; Woo-Nam Lee; Joong-Rin Shin .“An improved particle swarm optimization for economic dispatch problems with non-smooth cost functions”. Power Engineering Society General Meeting, 2006. IEEE.

[29] Clerc, M., and Kennedy, J. “The particle swarm: Explosion, stability, and convergence in a multimodal complex space.”Proceedings of the Congress of Evolutionary Computation, Vol. 6, 58-73, Washington DC, IEEE, Piscataway, NJ, USA, 2000
[30] 蘇昱豪,“具隨機粒子與微調機制式粒子群最佳化”,碩士論文,國立台灣科技大學機械工程研究所,2006。
[31] http://www.honda-taiwan.com.tw/showroom/accord/accord/f2.htm
[32] Wong, J.Y., “Theory of ground vehicles”, 3rd ed, New York, John Wiley,2001.

QR CODE