簡易檢索 / 詳目顯示

研究生: 陳品瑋
Pin-Wei Chen
論文名稱: 鎢基(W-Ni-B)金屬玻璃薄膜之微結構和機械性質研究
Study of Microstructure and Mechanical Properties of W-Ni-B Thin-Film Metallic Glass
指導教授: 朱瑾
Jinn P. Chu
口試委員: 朱瑾
李志偉
郭俊良
姚栢文
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 164
中文關鍵詞: 鎢基物理氣相沉積金屬玻璃薄膜硬度摩擦係數
外文關鍵詞: W-based, PVD, thin film metallic glass, boron, hardness, Coefficient of Friction
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢基金屬玻璃薄膜(TFMG)是近年來一種新穎的金屬玻璃材料,它同時具有高硬度和高模量,通常會將它應用於增強各種薄膜硬度上。在本實驗中我們透過幾種不同的沉積方法和薄膜的改質,例如:單靶材沉積、雙靶材共鍍沉積(使用純B/B4C與鎢基靶材共鍍)、通入氮氣和恆溫退火處理,成功地製造出具有不同化學成分和薄膜性質的W-TFMG。在沉積的過程中,我們改變靶材到基材間不同的工作距離(WD)來獲得最佳的化學成分與薄膜性質。其中我們發現工作距離為5 cm和10 cm時,薄膜具有最佳參數。此外,我們使用不同的基材偏壓,增加基材偏壓可使硼原子再沉積,因此提高了硼的含量,在基材偏壓200V下可以得到最高硬度的薄膜。而在沉積過程中使用純B/B4C和鎢基靶材進行共沉積,其結果能有效提高薄膜中的硼含量,並且也提高薄膜硬度和降低COF。其中薄膜的最高硬度約為19.58 GPa,COF約為0.06。在沉積過程中通入氮氣,最初我們認為可使鎢和氮氣形成氮化鎢,其硬度非常高,可以有效的提高薄膜的硬度。當實際注入過多的氮氣時,會使金屬玻璃薄膜的氮含量增高,而使薄膜中的鎢和硼含量明顯下降,所以薄膜的硬度會隨著氮氣流量比例的增加反而降低。在退火過程中,當恆溫退火溫度高於Tg時,非晶態的TFMG有機會獲得足夠的能量在非晶結構中形成奈米晶顆粒,因此可以提高薄膜的整體的硬度以及薄膜的耐磨性。通過各種不同的沉積方式,發現薄膜中鎢和硼的含量不同時,對於薄膜的硬度有很大的影響。當硼含量較高時,薄膜的硬度也會隨之提升,並且可以得到更低且更穩定的COF,由此可知,濺射技術對於提升耐磨性具有非常大的潛力。因此可藉由鎢基金屬玻璃薄膜的優異性質,如:高溫的熱穩定性、高硬度和低摩擦係數。應用於須在高溫時的環境下,並且低摩擦係數的特性更能運用在許多機械器具上,因此該薄膜未來的應用不可限量。


    The tungsten (W) based thin film metallic glass (TFMG) is one type of material with a high young modulus and hardness. It’s made W-based TFMG often used as reinforcement in various types of applications. In the study that has been carried out, we successfully fabricated W-based TFMG with various chemical compositions and properties, through several methods, namely single target deposition, co-sputtering (pure B and B4C), N2 gas injection, and post-treatment annealing. In the deposition process, different working distances (WD) are used to obtain an optimum chemical composition and hardness property. We found that WD of 5 and 10 cm be the best parameters for the deposition. Using different substrate bias, the increase of substrate bias will cause the boron atoms to re-deposit, so the boron content will increase, and the highest hardness film can be obtained at 200V substrate bias. The deposition process using pure B/B4C and tungsten-based target for co-deposition, the result can effectively improve the boron content, and improve the film hardness and reduce COF. the highest hardness ~ 19.58 GPa, and COF ~ 0.06. In the deposition process with N2 gas injection, we originally assumed that nitrogen can form tungsten nitride with tungsten, which has a very high hardness, can enhance the hardness of the thin film. However, when more nitrogen content introduced, the higher content of N inside TFMG and make the W and B content lower, so the hardness of the thin film will decrease as the ratio of nitrogen flow increases. During the annealing process, when the isothermal annealing temperature is higher than Tg, TFMG has the opportunity to gain enough energy to form nanocrystalline, which can increase the overall hardness of the thin film. The hardness of the thin film is greatly influenced by the different content of W and B in the thin film through various deposition methods. When the B content is higher, the hardness of the thin film increases, with a lower and more stable COF obtained. Sputtering that it is a potentially useful application for wearing resistance. Therefore, it applied to W-TFMG with excellent properties such as thermal stability, high hardness, and low COF. The film can be used in high temperature environments, and the low COF used in many mechanical devices, so the future applications of the thin film are unlimited.

    摘要 IV Abstract V Acknowledgements VI Contents VII List of Figures 1 List of Tables 9 Chapter 1 Introduction 12 1.1 Introduction 12 1.2 Objectives of study 13 Chapter 2 Literature Reviews 14 2.1 Bulk Metallic Glasses (BMGs) 14 2.1.2 Properties of BMG 14 2.1.2 Applications of BMG 14 2.2 Thin Film Metallic Glasses (TFMGs) 16 2.2.1 Tg and Tx 17 2.2.2 Properties of TFMG 19 2.2.3 Applications of TFMG 23 2.2.4 Tungsten (W)-Based TFMGs 28 2.2.5 Advantages of W-TFMG 29 2.2.6 Effects of Boron amount on TFMG 32 2.2.7 Effects of Nitrogen amount on TFMG 35 2.3 Hard and Protective Coatings 44 2.3.1 Nitride Coatings 45 2.3.2 Carbide Coatings 47 2.3.3 Boride Coatings 49 2.4 Physical Vapor Deposition (PVD) 53 2.4.1 Magnetron Sputtering System 54 2.4.2 DC power 55 2.4.3 RF Power 55 2.4.4 High Power Impulse Magnetron Sputtering (HiPIMS) 56 2.4.5 Co-Sputtering Deposition System 58 2.4.6 Influence of Substrate Bias 60 Chapter 3 Experimental Procedure 64 3.1 Substrate and target 65 3.2 The W-Ni-B TFMG fabrication (single target) 65 3.3 The W-Ni-B TFMG Fabrication (Co-sputtering) 67 3.4 The W-Ni-B TFMG fabrication (post-annealing treatment) 69 3.5 Microstructure and composition analysis 70 3.5.1 Crystallographic analysis (XRD) 70 3.5.2 High Temperature Differential Scanning Colorimetry (HT-DSC) 70 3.5.3 Scanning Electron Microscopy (SEM) 71 3.5.4 High resolution X-ray Photoelectron Spectrometer (HR-XPS) 72 3.6 Hardness and Young’s modulus measurement (Nanoindentation system) 73 3.7 Micro-scratch measurement 74 3.8 Surface roughness measurement (AFM) 75 3.9 Water contact angle 75 Chapter 4 Results and Discussion 77 4.1 Fabrication of TFMGs using single target deposition 77 4.1.1 Effects of working distance on composition and mechanical properties 77 4.1.2 Effects of bias voltage on composition and mechanical properties 79 4.1.3 Effects of power supply on composition and mechanical properties 82 4.1.4 Comparisons of hardness and Young's Modulus with other metallic glasses 84 4.1.5 Structural (XRD) and thermal (DSC) analysis 85 4.1.6 X-ray photoelectron spectroscopy (XPS) analysis 86 4.1.7 Observation of SEM images of cross-section 88 4.1.8 Surface roughness (AFM) analysis 88 4.1.9 Water contact angle analysis 89 4.2 Fabrication of TFMGs using co-sputtering with Boron 90 4.2.1 Composition (WDS) and structural (XRD) analysis 90 4.2.2 Thermal (DSC) analysis 93 4.2.3 X-ray photoelectron spectroscopy (XPS) analysis 94 4.2.4 Observation of SEM images of cross-section 96 4.2.5 Surface roughness (AFM) analysis 98 4.2.6 Water contact angle analysis 100 4.2.7 Hardness and Modulus Results 102 4.2.8 Coefficient of Friction (COF) results 106 4.3 Fabrication of thin films using co-sputtering with B4C 108 4.3.1 Composition (WDS) and structural (XRD) analysis 108 4.3.2 Thermal (DSC) analysis 110 4.3.3 X-ray photoelectron spectroscopy (XPS) analysis 110 4.3.4 Observation of SEM images of cross-section 113 4.3.5 Surface roughness (AFM) analysis 114 4.3.6 Water contact angle analysis 114 4.3.7 Hardness and modulus analysis 115 4.3.8 Coefficient of Friction (COF) results 116 4.4 Fabrication of thin films with N2 gas flow ratio (f) variation 117 4.4.1 Composition (WDS) and structural (XRD) analysis 117 4.4.2 Thermal (DSC) analysis 119 4.4.3 X-ray photoelectron spectroscopy (XPS) analysis 119 4.4.4 Observation of SEM images of cross-section 122 4.4.5 Surface roughness (AFM) analysis 122 4.4.6 Water contact angle analysis 123 4.4.7 Hardness and modulus analysis 123 4.4.8 Coefficient of Friction (COF) results 125 4.5 Post-annealing on single target deposition and using co-sputtering with pure B 125 4.5.1 Structural (XRD) analysis 126 4.5.2 Surface morphology analysis 128 4.5.3 Composition (EDS) analysis 130 4.5.4 Surface roughness (AFM) analysis 132 4.5.5 Water contact angle analysis 134 4.5.6 Hardness and modulus analysis 135 4.5.7 Coefficient of Friction (COF) results 138 4.6 Comparison of hardness and Young’s modulus with other thin films 139 Chapter 5 Conclusions 142 Chapter 6 Future works 144 References 145

    [1] G.S.Oehrlein, M.F.Doemling, B.E.E.Kastenmeier, P.J.Matsuo, N.R.Rueger, M.Schaepkens, T.E.F.M.Standaert, Surface science issues in plasma etching, IBM J. Res. Dev. 43 (1999) 181–196.
    [2] C.S.A. Inoue, Bulk Metallic Glasses, CRC Press, Boca Raton, 2011.
    [3] W.Jacob, J.Roth, Chemical Sputtering, in: Sputtering by Part. Bombard., Springer Berlin Heidelberg, 2007: pp. 329–400.
    [4] N.N.Thi Nguyen, L.Tran Van, Potential applications of metallic glasses, Int. J. Sci. Environ. Technol. 5 (2016) 2209–2216.
    [5] Y.Yoshizawa, S.Oguma, K.Yamauchi, New Fe‐based soft magnetic alloys composed of ultrafine grain structure, J. Appl. Phys. 64. 6044 (1998) 1–4.
    [6] H.R.Lashgari, Z.Chen, X.Z.Liao, D.Chu, M.Ferry, S.Li, Thermal stability, dynamic mechanical analysis and nanoindentation behavior of FeSiB(Cu) amorphous alloys, Mater. Sci. Eng. A. 626 (2015) 480–499.
    [7] J.P.Chu, J.C.Huang, J.S.C.Jang, Y.C.Wang, P.K.Liaw, Thin film metallic glasses: Preparations, properties, and applications, Jom. 62 (2010) 19–24.
    [8] J.P.Chu, C.M.Lee, R.T.Huang, P.K.Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surf. Coatings Technol. 205 (2011) 4030–4034.
    [9] J.P.Chu, J.E.Greene, J.S.C.Jang, J.C.Huang, Y.L.Shen, P.K.Liaw, Y.Yokoyama, A.Inoue, T.G.Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Mater. 60 (2012) 3226–3238.
    [10] S.Korkmaz, A.Kariper, Glass formation, production and superior properties of Zr-based thin film metallic glasses (TFMGs): A status review, J. Non. Cryst. Solids. 527 (2020).
    [11] J.Eckert, J.Das, S.Pauly, C.Duhamel, Mechanical properties of bulk metallic glasses and composites, J. Mater. Res. 22 (2007) 285–301.
    [12] P.Zeman, M.Zítek, Zuzjaková, R.Čerstvý, Amorphous Zr-Cu thin-film alloys with metallic glass behavior, J. Alloys Compd. 696 (2017) 1298–1306.
    [13] P.Yiu, W.Diyatmika, N.Bönninghoff, Y.C.Lu, B.Z.Lai, J.P.Chu, Thin film metallic glasses: Properties, applications and future, J. Appl. Phys. 127 (2020) 030901.
    [14] S.J.Bull, Failure mode maps in the thin film scratch adhesion test, Tribol. Int. 30 (1997) 491–498.
    [15] C.S.Chen, P.Yiu, C.L.Li, J.P.Chu, C.H.Shek, C.H.Hsueh, Effects of annealing on mechanical behavior of Zr–Ti–Ni thin film metallic glasses, Mater. Sci. Eng. A. 608 (2014) 258–264.
    [16] C.C.Yu, C.M.Lee, J.P.Chu, J.E.Greene, P.K.Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature, APL Mater. 4 (2016) 116101.
    [17] J.P.Chu, T.Y.Liu, C.L.Li, C.H.Wang, J.S.C.Jang, M.J.Chen, S.H.Chang, W.C.Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films. 561 (2014) 102–107.
    [18] J.P.Chu, W.Diyatmika, Y.J.Tseng, Y.K.Liu, W.C.Liao, S.H.Chang, M.J.Chen, J.W.Lee, J.S.C.Jang, Coating Cutting Blades with Thin-Film Metallic Glass to Enhance Sharpness, Sci. Rep. 9 (2019) 1–11.
    [19] B.Hubert, P.Yiu, C.C.Hu, J.P.Chu, Fe-based thin film metallic glass as an activator of peroxymonosulfate for azo dye degradation, Surf. Coatings Technol. 412 (2021) 127031.
    [20] J.P.Chu, C.C.Yu, Y.Tanatsugu, M. Yasuzawa, Y.L. Shen, Non-stick syringe needles: Beneficial effects of thin film metallic glass coating, Sci. Rep. 6 (2016).
    [21] M.Ohtsuki, K.Nagata, R.Tamura, S.Takeuchi, Tungsten-based metallic glasses with high crystallization temperature, high modulus and high hardness, Mater. Trans. 46 (2005) 48–53.
    [22] M.Ohtsuki, R.Tamura, S.Takeuchi, S.Yoda, T.Ohmura, Hard metallic glass of tungsten-based alloy, Appl. Phys. Lett. 84 (2004) 4911–4913.
    [23] S.V.Madge, A.Caron, R.Gralla, G.Wilde, S.K.Mishra, Novel W-based metallic glass with high hardness and wear resistance, Intermetallics. 47 (2014) 6–10.
    [24] M.Ohtsuki, K.Nagata, R.Tamura, S.Takeuchi, Tungsten-based metallic glasses with high crystallization temperature, high modulus and high hardness, Mater. Trans. 46 (2005) 48–53.
    [25] S.Mirzaei, M.Alishahi, P.Souček, J.Ženíšek, D.Holec, N.Koutná, V.Buršíková, M.Stupavská, L.Zábranský, F.Burmeister, B.Blug, Z.Czigány, K.Balázsi, R.Mikšová, P.Vašina, The effect of chemical composition on the structure, chemistry and mechanical properties of magnetron sputtered W-B-C coatings: Modeling and experiments, Surf. Coatings Technol. 383 (2020) 125274.
    [26] A.Leyland, A.Matthews, On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour, Wear. 246 (2000) 1–11.
    [27] J.Musil, F.Kunc, H.Zeman, H.Poláková, Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings, Surf. Coatings Technol. 154 (2002) 304–313.
    [28] C.L.Li, J.C.Chang, B.S.Lou, J.W.Lee, J.P.Chu, Fabrication of W-Zr-Si thin film metallic glasses and the influence of post-annealing treatment, J. Non. Cryst. Solids. 482 (2018) 170–176.
    [29] C.L.Chiang, J.P.Chu, F.X.Liu, P.K.Liaw, R.A.Buchanan, A 200 nm thick glass-forming metallic film for fatigue-property enhancements, Appl. Phys. Lett. 88 (2006).
    [30] C.Y.Chuang, J.W.Lee, C.L.Li, J.P.Chu, Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass, Surf. Coatings Technol. 215 (2013) 312–321.
    [31] J.P.Chu, G.W.Tseng, C.Y.Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: Fabrication and characterization, Materials & Design,209 (2021) 109998.
    [32] J.H.Yao, C.Hostert, D.Music, A.Frisk, M.Björck, J.M.Schneider, Synthesis and mechanical properties of Fe–Nb–B thin-film metallic glasses, Scr. Mater. 67 (2012) 181–184.
    [33] J.H.Yao, C.Hostert, D.Music, A.Frisk, M.Björck, J.M.Schneider, Synthesis and mechanical properties of Fe-Nb-B thin-film metallic glasses, Scr. Mater. 67 (2012) 181–184.
    [34] W.H.Wang, Correlations between elastic moduli and properties in bulk metallic glasses, J. Appl. Phys. 99 (2006) 093506.
    [35] H.S.Chen, Glassy metals, Reports Prog. Phys. 43 (1980) 353.
    [36] U.Ramamurty, S.Jana, Y.Kawamura, K.Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Mater. 53 (2005) 705–717.
    [37] L.Qian, M.Li, Z.Zhou, H.Yang, X.Shi, Comparison of nano-indentation hardness to microhardness, Surf. Coatings Technol. 195 (2005) 264–271..
    [38] P.S.Chen, H.W.Chen, J.G.Duh, J.W.Lee, J.S.C.Jang, Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-Ag-Ta––An alternative class of thin film metallic glass, Appl. Phys. Lett. 101 (2012) 181902.
    [39] J.Lee, H.C.Tung, J.G.Duh, Enhancement of mechanical and thermal properties in Zr–Cu–Ni–Al–N thin film metallic glass by compositional control of nitrogen, Mater. Lett. 159 (2015) 369–372.
    [40] A.Takeuchi, A.Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans. 46 (2005) 2817–2829.
    [41] C.H.Cheng, J.W.Lee, L.W.Ho, H.W.Chen, Y.C.Chan, J.G.Duh, Microstructure and mechanical property evaluation of pulsed DC magnetron sputtered Cr-B and Cr-B-N films, Surf. Coatings Technol. 206 (2011) 1711–1719
    [42] K.P.Budna, P.H.Mayrhofer, J.Neidhardt, É.Hegedũs, I.Kovács, L.Tóth, B.Pécz, C.Mitterer, Effect of nitrogen-incorporation on structure, properties and performance of magnetron sputtered CrB2, Surf. Coatings Technol. 202 (2008) 3088–3093.
    [43] S.Mirzaei, M.Alishahi, P.Souček, L.Zábranský, V.Buršíková, M.Stupavská, V.Peřina, K.Balázsi, Z.Czigány, P.Vašina, Effect of bonding structure on hardness and fracture resistance of W-B-C coatings with varying B/W ratio, Surf. Coatings Technol. 358 (2019) 843–849.
    [44] S.Veprek, M.G.J.Veprek-Heijman, P.Karvankova, J.Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1–29.
    [45] Y.Kitamika, H.Hasegawa, Mechanical, tribological, and oxidation properties of Si-containing CrAlN films, Vacuum 164 (2019) 29–33.
    [46] D.Wang, M.Hu, D.Jiang, Y.Fu, Q.Wang, J.Yang, J.Sun, L.Weng, The improved corrosion resistance of sputtered CrN thin films with Cr-ion bombardment layer by layer, Vacuum 143 (2017) 329-335.
    [47] Y.C.Chim, X.Z.Ding, X.T.Zeng, S.Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 517 (2009) 4845-4849.
    [48] C.C.Baker, S.I.Shah, Reactive sputter deposition of tungsten nitride thin films, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 20 (2002) 1699.
    [49] B.S.Lou, I.Moirangthem, J.W.Lee, Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate, Surf. Coatings Technol. 393 (2020) 125743.
    [50] V.Kouznetsov, K.Macak. J.M.Schneider, U.Helmersson, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface & Coatings Technology 122 (1999) 290-293
    [51] J.T.Gudmundsson, N.Brenning, D.Lundin, U.Helmersson, High power impulse magnetron sputtering discharge, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 30 (2012) 030801.
    [52] D.V.Suetin, I.R.Shein, A.L.Ivanovskii.-J, Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN, Journal of Structural Chemistry 51 (2010) 199-203.
    [53] D.Roth, B.Rau, S.Roth, J.Mai, K.H.Dittrich, Large area and three-dimensional deposition of diamond-like carbon films for industrial applications, Surf. Coatings Technol. 74-75 (1995) 637-641.
    [54] O.Wänstrand, M.Larsson, P.Hedenqvist, Mechanical and tribological evaluation of PVD WC/C coatings, Surf. Coatings Technol. 111 (1999) 247–254.
    [55] Y.M.Liu, C.L.Jiang, Z.L.Pei, H.Lei, J.Gong, C.Sun, Microstructure and properties of AlB2-type WB2 thin films deposited by direct-current magnetron sputtering, Surf. Coatings Technol. 245 (2014) 108–116.
    [56] I.V.Tudose, M.P.Suchea, Magnetron Sputtering - an overview, ScienceDirect Topics
    [57] M.Braun, Magnetron sputtering technique, in: Handb. Manuf. Eng. Technol., Springer-Verlag London Ltd, 2015: pp. 2929–2957.
    [58] P.Raman, J.Weberski, M.Cheng, I.Shchelkanov, D.N.Ruzic, A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations, J. Appl. Phys. 120 (2016).
    [59] G.P.Reddy, K.T.R.Reddy, Physical Properties of Cu2SnS3 Thin Films Prepared by Sulfurization of co-sputtered Cu-Sn Metallic Precursors, Mater. Today Proc. 4 (2017) 12518–12524.
    [60] M.Apreutesei, P.Steyer, L.Joly-Pottuz, A.Billard, J.Qiao, S.Cardinal, F.Sanchette, J.M.Pelletier, C.Esnouf, Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses, Thin Solid Films. 561 (2014) 53–59.
    [61] S.Mirzaei, M.Alishahi, P.Souček, V.Buršíková, L.Zábranský, L.Gröner, F.Burmeister, B.Blug, P.Daum, R.Mikšová, P.Vašina, Effect of substrate bias voltage on the composition, microstructure and mechanical properties of W-B-C coatings, Appl. Surf. Sci. 528 (2020) 146966.
    [62] W.C.Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583.
    [63] W.D.Sproul, K.O.Legg, Opportunities for innovation : advanced surface engineering, (1995) 186.
    [64] R.Wuhrer, W.Y.Yeung, Effect of target-substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings, Scr. Mater. 49 (2003) 199–205.
    [65] F.Meyer, S.Oeser, A.Graff, E.Reisacher, E.R.Carl, A.Fromm, M.Wirth, L.Groener, F.Burmeister, Effect of substrate bias on the growth behavior of iridium on A-plane sapphire using radio frequency sputtering at low temperatures, Thin Solid Films. 650 (2018) 65–70.
    [66] Y.M.Zhao, W.B.Hu, Y.D.Xia, E.F.Smith, Y.Q.Zhu, C.W.Dunnill, D.H.Gregory, Preparation and characterization of tungsten oxynitride nanowires, J. Mater. Chem. 17 (2007) 4436–4440.
    [67] Q.Xie, Z.Fu, X.Wei, X.Li, W.Yue, J.Kang, L.Zhu, C.Wang, J.Meng, Effect of substrate bias current on structure and properties of CrNx films deposited by plasma enhanced magnetron sputtering, Surf. Coatings Technol. 365 (2019) 134–142.
    [68] J.C.Chang, J.W.Lee, B.S.Lou, C.L.Li, J.P.Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr-W-Ti thin film metallic glasses, in: Thin Solid Films, Elsevier, 2015: pp. 253–256.
    [69] J.C.Ding, H.Mei, J.Zheng, Q.M.Wang, M.C.Kang, T.F.Zhang, K.H.Kim, Microstructure and wettability of novel Al-containing diamond-like carbon films deposited by a hybrid sputtering system, J. Alloys Compd. 868 (2021) 159130.
    [70] K.Xue, Y.Guo, Y.Zhou, B.Xu, P.Li, Thermal stability of the HPT-processed tungsten at 1250 – 1350 °C, Int. J. Refract. Met. Hard Mater. 94 (2021) 105377.
    [71] D.M.Devia, E.Restrepo-Parra, P.J.Arango, A.P.Tschiptschin, J.M.Velez, TiAlN coatings deposited by triode magnetron sputtering varying the bias voltage, Appl. Surf. Sci. 257 (2011) 6181–6185.
    [72] D.Mercs, P.Briois, V.Demange, S.Lamy, C.Coddet, Influence of the addition of silicon on the structure and properties of chromium nitride coatings deposited by reactive magnetron sputtering assisted by RF plasmas, Surf. Coatings Technol. 201 (2007) 6970–6976.
    [73] Y.Lv, L.Ji, X.Liu, H.Li, H.Zhou, J.Chen, Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering, Appl. Surf. Sci. 258 (2012) 3864–3870.
    [74] Z.Y.Suo, Y.L.Song, B.Yu, K.Q.Qiu, Fabrication of tungsten-based metallic glasses by low purity industrial raw materials, Mater. Sci. Eng. A. 6 (2011) 2912–2916.
    [75] J.Zhang, W.Liu, Y.Ma, X.Ye, Y.Wu, Fabrication and Properties of Novel NiWFeB Amorphous Alloys, J. Mater. Eng. Perform. 2017 269. 26 (2017) 4349–4353.
    [76] X.Liu, J.Zhou, J.Wang, C.Chang, Z.Sun, B.Sun, J.Liu, D.Ling, Q.Li, Novel Ta46.5W35Co18.5 thin film metallic glass with excellent corrosion resistance, high hardness and good thermal stability, J. Alloys Compd. 890 (2022) 161874.
    [77] C.DeArmitt, Functional Fillers for Plastics, Appl. Plast. Eng. Handb. Process. Mater. Appl. Second Ed. (2017) 517–532.
    [78] A.Obeydavi, A.Shafyei, A.Rezaeian, P.Kameli, J.W.Lee, Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering, J. Non. Cryst. Solids. 527 (2020).
    [79] C.Zhang, B.Zhang, L.Xie, Improving mechanical properties of Ni-W based nanocrystalline films by multilayered architecture, Surf. Coatings Technol. 402 (2020) 126341.
    [80] D.G.Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. (United Kingdom). 8 (1992) 345–349.
    [81] S.F.Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin Philos. Mag. J. Sci. 45 (1954) 823–843.
    [82] H.Bolvardi, J.Emmerlich, M. toBaben, D.Music, J.vonAppen, R.Dronskowski, J.M.Schneider, Systematic study on the electronic structure and mechanical properties of X2BC (X = Mo, Ti, V, Zr, Nb, Hf, Ta and W), J. Phys. Condens. Matter. 25 (2012) 045501.
    [83] D.V.Savchenko, A.A.Serdan, V.A.Morozov, G.vanTendeloo, S.G.Ionov, Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation, New Carbon Mater. 27 (2012) 12–18.
    [84] P.V.Krasovskii, O.S.Malinovskaya, A.V.Samokhin, Y.V.Blagoveshchenskiy, V.A.Kazakov, A.A.Ashmarin, XPS study of surface chemistry of tungsten carbides nanopowdersproduced through DC thermal plasma/hydrogen annealing process, Appl. Surf. Sci. 339 (2015) 46–54.
    [85] M.D.Abad, M.A.Muñoz-Márquez, S.ElMrabet, A.Justo, J.C.Sánchez-López, Tailored synthesis of nanostructured WC/a-C coatings by dual magnetron sputtering, Surf. Coatings Technol. 204 (2010) 3490–3500.
    [86] X.Peng, Z.Barber. T.Clyne, Surface roughness of diamond-like carbon films prepared using various techniques, S. and C.Technology 138 (2001) 23-32.
    [87] L.C.Chang, M.C.Sung, L.H.Chu, Y.I.Chen, Effects of the Nitrogen Flow Ratio and Substrate Bias on the Mechanical Properties of W–N and W–Si–N Films, Coatings 2020, Vol. 10, Page 1252. 10 (2020) 1252.
    [88] S.H.Mohamed, Thermal stability of tungsten nitride films deposited by reactive magnetron sputtering, Surf. Coatings Technol. 202 (2008) 2169–2175.
    [89] D.Schild, S.Ulrich, J.Ye, M.Stüber, XPS investigations of thick, oxygen-containing cubic boron nitride coatings, Solid State Sci. 12 (2010) 1903–1906. 9.
    [90] B.Colović, D.Kisić, B.Jokanović, Z.Rakočević, I.Nasov, A.T.Petkoska, V.Jokanović, Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation, Mater. Sci. Pol. 37 (2019) 173–181.
    [91] J.Wang, R.Li, R.Xiao, T.Xu, Y.Li, Z.Liu, L.Huang, N.Hua, G.Li, Y.Li, T.Zhang, Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study, Appl. Phys. Lett. 99 (2011) 151911.
    [92] A.Etiemble, C.DerLoughian, M.Apreutesei, C.Langlois, S.Cardinal, J.M.Pelletier, J.F.Pierson, P.Steyer, Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications, J. Alloys Compd. 707 (2017) 155–161.
    [93] J.J.Pang, M.J.Tan, K.M.Liew, C.Shearwood, Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7, Phys. B Condens. Matter. 407 (2012) 340–346..
    [94] Y.L.Deng, J.W.Lee, B.S.Lou, J.G.Duh, J.P.Chu, J.S.C.Jang, The fabrication and property evaluation of Zr–Ti–B–Si thin film metallic glass materials, Surf. Coatings Technol. 259 (2014) 115–122.
    [95] V.Keryvin, V.H.Hoang, J.Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation, Intermetallics. 17 (2009) 211–217.
    [96] H.Choi-Yim, D.Xu, W.L.Johnson, Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X=B,Fe,Cu) alloy systems, Appl. Phys. Lett. 82 (2003) 1030.
    [97] S.Zhao, H.Wang, L.Xiao, N.Guo, D.Zhao, K.Yao, N.Chen, High strain rate sensitivity of hardness in quinary Ti-Zr-Hf-Cu-Ni high entropy metallic glass thin films, Phys. E Low-Dimensional Syst. Nanostructures. 94 (2017) 100–105.
    [98] Y.Liu, S.Hata, K.Wada, A.Shimokohbe, Thermal, Mechanical and Electrical Properties of Pd-Based Thin-Film Metallic Glass, Jpn. J. Appl. Phys. 40 (2001) 5382.
    [99] G.Zambrano, P.Prieto, F.Perez, C.Rincon, H.Galindo, L.Cota-Araiza, J.Esteve, E.Martinez, Hardness and morphological characterization of tungsten carbide thin films, Surf. Coatings Technol. 108–109 (1998) 323–327.
    [100]J.H.Huang, H.C.Yang, X.J.Guo, G.P.Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coatings Technol. 195 (2005) 204–213.
    [101]D.Craciun, G.Socol, N.Stefan, I.N.Mihailescu, G.Bourne, V.Craciun, High-repetition rate pulsed laser deposition of ZrC thin films, Surf. Coatings Technol. 203 (2009) 1055–1058.
    [102]M.Audronis, P.J.Kelly, R.D.Arnell, A.V.Valiulis, Pulsed magnetron sputtering of chromium boride films from loose powder targets, Surf. Coatings Technol. 200 (2006) 4166–4173.
    [103]S.Chowdhury, K.Polychronopoulou, A.Cloud, J.R.Abelson, A.A.Polycarpou, Nanomechanical and nanotribological behaviors of hafnium boride thin films, Thin Solid Films. 595 (2015) 84–91.
    [104]C.Wang, Y.Yang, Y.W.Chung, Y.Zhang, S.Ouyang, Z.Xiao, K.Song, P.Li, Microstructure, hardness and toughness of boron carbide thin films deposited by pulse dc magnetron sputtering, Ceram. Int. 42 (2016) 6342–6346.

    無法下載圖示 全文公開日期 2026/10/28 (校內網路)
    全文公開日期 2026/10/28 (校外網路)
    全文公開日期 2026/10/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE