簡易檢索 / 詳目顯示

研究生: 周志城
Chih-Cheng Chou
論文名稱: 應用於獵能系統具自適性導通時間控制與零電流切換調整之切換式升壓型轉換器
A DC-DC Boost Converter with Adaptive On-Time Control and Zero-Current Switching for Energy Harvesting System
指導教授: 陳伯奇
Poki Chen
口試委員: 黃育賢
Yuh-Shyan Hwang
陳伯奇
Poki Chen
陳建中
Jiann-Jong Chen
宋國明
Guo-Ming Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 156
中文關鍵詞: 光伏能源獵能系統切換式升壓型轉換器自適性導通時間控制零電流切換超廣域負載電流
外文關鍵詞: solar cell, energy harvesting, boost converter, adaptive on-time control, zero-current switching, wide load current range
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現代高度科技化的社會當中,眾多電子產品藉由感測器來拓展應用領域,若能將其鏈結環境監控與居家照護、防災,更能將科技融入生活,成為智慧生活的核心技術之一。
本論文提出一可應用於獵取光伏能源之切換式升壓型轉換器,可提供電能給諸如溫度等諸多感測器,其控制技術係採用自適性導通時間控制,使系統即便操作在極輕負載條件下仍具有較高的整體能量轉換效率,達到脈波頻率調變之特性
,且在輸入電壓的變動下,亦可降低系統切換頻率之變異量;此外,另加入一零電流切換調整機制,不僅能避免因同步整流而產生的功率損耗,更可再進一步提升整體能量轉換效率。
本次設計晶片係使用TSMC 0.18-μm CMOS標準製程來實現,整體晶片佈局面積為1.053×0.603 mm2 (含I/O pads),其輸入電壓範圍可操作於0.8V~1.2V,輸出電壓則可藉由內建之帶差參考電路將其穩定在1.8V,其後模擬結果顯示,最大輸出電壓之漣波大小約為2%,並具有超廣域之負載電流範圍(30μA~30mA),其中在負載電流為5mA時,可達最高能量轉換效率86.45%。


Sensors play a dominate role in environmental monitoring, disaster prevetion, home care … and so forth to realize the so-called intelligent living for modern humankinds. How to power such immense sensors becomes an everlasting hot topic for related research.
In this thesis, a boost converter for on-chip solar cell is proposed to power the succeeding temperature sensor. The adaptive on-time control is adopted to increase the power conversion efficiency under extreme light load and narrow the switching frequency range under input voltage variation. The zero-current switching is also applied to reduce the power loss caused by reverse recovery current to further enhance the overall conversion efficiency.
The chip is realized in a TSMC 0.18-μm standard CMOS process with 1.053×0.603 mm2 chip area (including I/O pads). The operational input voltage range is 0.8V~1.2V and the output voltage is stabilized at 1.8V. With post-simulations, the output ripple is around 2% under an extremely wide load current range of 30μA~30mA. The peak power conversion efficiency is 86.45% at 5mA load current.

摘  要 I Abstract II 誌  謝 III 目 錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1-1 研究背景與動機 1 1-1-1 研究標的 2 1-1-2 應用情境 4 1-1-3 研究方法 6 1-2 相關研究發展 9 1-3 論文架構簡介 11 第2章 切換式直流—直流轉換器基本介紹 12 2-1 降壓型轉換器 15 2-1-1 穩態分析 16 2-1-2 輸出電容與輸出漣波電壓 22 2-2 升壓型轉換器 23 2-2-1 穩態分析 24 2-2-2 輸出電容與輸出漣波電壓 31 2-3 電源管理設計中的特性、規格及其定義 32 2-3-1 負載調節率 32 2-3-2 線性調節率 32 2-3-3 負載暫態響應 33 2-3-4 輸出電壓漣波 34 2-3-5 功率損耗的考量 34 2-3-6 能量轉換效率 36 第3章 切換式直流—直流轉換器之回授控制技術 37 3-1 脈波寬度調變控制技術 38 3-1-1 電壓模式控制 38 3-1-2 電流模式控制 40 3-1-3 特性比較 45 3-2 漣波控制技術 46 3-2-1 遲滯控制 47 3-2-2 固定導通時間控制 49 3-2-3 固定不導通時間控制 52 3-2-4 固定頻率峰值∕谷值電壓控制 54 3-2-5 特性比較 56 3-3 應用於本論文之控制技術 58 3-3-1 加入鎖相迴路之鎖頻技術 58 3-3-2 具近似固定切換頻率之自適性導通時間控制 60 3-3-3 自適性導通時間控制實現於切換式升壓型轉換器 63 第4章 電路設計與實現 66 4-1 設計目標 66 4-2 整體架構介紹 67 4-3 導通時間控制器 68 4-3-1 電壓—電流轉換電路 68 4-3-2 導通時間調變器與邏輯控制電路 70 4-3-3 導通時間調變器與邏輯控制電路 71 4-4 零電流切換調整 74 4-5 比較器 77 4-6 非重疊時脈產生器與閘極驅動電路 83 4-7 帶差參考電路 85 4-7-1 與溫度無關之參考電路 85 4-7-2 電流模式之帶差參考電路 91 4-8 小結 93 第5章 晶片佈局考量 95 5-1 不匹配 96 5-1-1 隨機性不匹配誤差 96 5-1-2 系統性不匹配誤差 96 5-2 多重元件匹配佈局 97 5-3 其他訊號線佈局考量 98 5-4 功率開關元件 100 5-5 整體晶片佈局 103 第6章 模擬與量測結果 108 6-1 模擬測試環境 108 6-2 各項子電路模擬 110 6-2-1 自適性導通時間控制器 110 6-2-2 零電流切換調整 111 6-2-3 帶差參考電路 112 6-3 穩態操作 115 6-4 暫態響應 117 6-4-1 輸入電壓變異 117 6-4-2 負載電流變異 118 6-5 功率開關元件之最佳化設計 120 6-6 能量轉換效率 121 6-7 切換頻率之變異量 124 6-8 量測考量與結果 125 第7章 結論 128 7-1 總結與貢獻 128 7-2 效能比較 130 7-3 未來展望與研究方向 131 參考文獻 136

[1]Fumio Horiguchi, “Integration of Series-Connected On-Chip Solar Battery in a Triple-Well CMOS LSI,” IEEE Transactions on electron devices, vol. 59, no. 6, June 2012.
[2]G. Li, Y. M. Tousi, A. Hassibi and E. Afshari, “Delay-Line-Based Analog-to-Digital Converters,” IEEE Transactions on Circuits and Systems II, vol. 56, no. 6, pp. 464-468, June 2009.
[3]H. Pekau, A. Yousif and J. W. Haslett, “A CMOS Integrated Linear Voltage-to-Pulse-Delay-Time Converter for Time Based Analog-to-Digital Converters,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2373-2376, May 2006.
[4]R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, R. Mertens, “Micropower energy harvesting,” Solid-State Electronics, vol. 53, no. 7, pp. 684-693, July 2009.
[5]R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting Circuits for Miniaturized Photovoltaic Cells,” IEEE International Symposium of Circuits and Systems (ISCAS), pp. 309–312, May 2011.
[6]Richard Redl, Jian Sun, “Ripple-Based Control of Switching Regulators—An Overview,” IEEE Transactions On Power Electronics, vol. 24, no. 12, pp. 2669–2680, Dec. 2009.
[7]C. H. Tsai, S. M. Lin, C. S. Huang, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique,” IEEE Transactions On Power Electronics, vol. 28, no. 8, Aug. 2013.
[8]H. H. Huang, C. L. Chen, and K. H. Chen, “Adaptive Window Control (AWC) Technique for Hysteresis DC–DC Buck Converters With Improved Light and Heavy Load Performance,” IEEE Transactions On Power Electronics, vol. 24, no. 6, June 2009.
[9]Y. Choi, N. Chang, T. Kim, “DC–DC Converter-Aware Power Management for Low-Power Embedded Systems,” IEEE Transactions On Computer-Aided Design Of Integrated Circuits And Systems, vol. 26, no. 8, Aug. 2007.
[10]L. Cheng, J. Ni, Z. Hong, B. Y. Liu, “A Constant Off-time Controlled Boost Converter with Adaptive Current Sensing Technique,” Proceedings of the ESSCIRC (ESSCIRC), pp. 443–446, Oct. 2011.
[11]X. Jing, P. K. T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum,” IEEE Journal of Solid-State Circuits, vol. 48, no. 10, Oct. 2013.
[12]Biranchinath Sahu, Gabriel A. Rincón-Mora, “An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control,” IEEE Transactions On Circuits And Systems—I: Regular Papers, vol. 54, no. 2, Feb. 2007.
[13]H. C. Lin, B. C. Fung, and T. Y. Chang, “A Current Mode Adaptive On-Time Control Scheme for Fast Transient DC-DC Converters,” IEEE International Symposium on Circuits and Systems, pp. 2602-2605, May 2008.
[14]C. Y. Wang, J. S. Guo, C. Y. Huang, and C. H. Tsai, “A High Efficiency DC/DC Boost Regulator with Adaptive Off/On-Time Control,” International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp. 1–4, Apr 2013.
[15]吳義利,「切換式電源轉換器:原理與實用設計技術(實例設計導向)」,文笙書局,ISBN: 978-957-43-2743-0,民104。
[16]梁適安,「交換式電源供給器之理論與實務設計(修訂版)」,全華圖書,ISBN: 978-957-21-6789-2,民98。
[17]K. H. Chen, Power Management Techniques for Integrated Circuit Design. Wiley-IEEE Press, ISBN: 9781118896822, 2016.
[18]B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[19]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer Academic, 2001.
[20]J. J. Chen, “An Active Current-Sensing Constant-Frequency HCC Buck Converter Using Phase-Frequency-Locked Techniques,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, pp. 761-769, 2008.
[21]F. Su, W. H. Ki, and C. Y. Tsui, “Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 815-822, Apr 2008.
[22]F. Su and W. H. Ki, “Digitally Assisted Quasi-V2 Hysteretic Buck Converter with Fixed Frequency and without Using Large-ESR Capacitor,” IEEE International Solid-State Circuits Conference (ISSCC 2009) - Digest of Technical Papers, pp. 446-447, 447a, 2009.
[23]C. H. Tso and J. C. Wu, “A Ripple Control Buck Regulator with Fixed Output Frequency,” IEEE Power Electronics Letters, vol. 1, pp. 61-63, Sep. 2003.
[24]R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 2nd ed. New York: Wily, 2005.
[25]Y. Gao, S. Wang, H. Li, L. Chen, S. Fan and L. Geng, “A Novel Zero-Current-Detector for DCM Operation in Synchronous Converter,” 2012 IEEE International Symposium on Industrial Electronics(ISIE 2012), pp. 99-104, May 2012.
[26]J. P. A. van der Wagt, G. G. Chu, and C. L. Conrad, “A Layout Structure for Matching Many Integrated Resistors,” IEEE Transactions on Circuits and Systems I, vol. 51, pp. 186-190, Jan. 2004.
[27]X. Dai, C. He, H. Xing, D. Chen, and R. Geiger, “An Nth order central symmetrical layout pattern for nonlinear gradients cancellation,” in Proc. IEEE International Symposium Circuits system., pp. 4835–4838, May 2005.
[28]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2002.
[29]D. Hilbiber, “A New Semiconductor Voltage Standard” ISSCC Dig. of Tech. Paper, pp. 32-33, Feb. 1964.
[30]R. Widlar, “New developments in IC voltage regulators,” IEEE International Solid-State Circuits Conference, pp. 158-159, Feb. 1970.
[31]K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
[32]K. Kim, H. Lee, S. Jung and C. Kim, “A 366kS/s 400μW 0.0013mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock” IEEE Custom Integrated Circuits Conf., pp. 203-206, Sep. 2009.
[33]H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, and K. SakuiA, “CMOS Bandgap Reference Circuit with Sub-1-V Operation,” IEEE Journal of Solid-State Circuits, vol. 34, no. 5, May 1999.
[34]A. Hastings, The Art of Analog Layout. Prentice Hall, 2001.
[35]M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433–1440, May 1989.
[36]簡鳳佐,「功率金氧半電晶體(Power MOSFET)之簡介」,《電子資訊》專刊,第20卷,第1期,2014年6月。
[37]Jialue Wang, Design of a Boost DC-DC Converter for Energy Harvesting Applications in 40nm CMOS Process. Master of Science Thesis, Delft University of Technology, Nov. 2014.
[38]程郁娟,「應用於 UWB 系統與 WiMax 無線網路之低雜訊放大器」,碩士論文,國立交通大學電機學院電信學程,中華民國九十六年一月。
[39]王禎祐,「漣波控制切換式升壓調節器之研究與設計」,碩士論文,國立成功大學電機工程學系,中華民國一○一年六月。
[40]I. Doms, P. Merken, R. Mertens, and C. Van Hoof, “Integrated Capacitive Power-Management Circuit for Thermal Harvesters with Output Power 10 to 1000 μW,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 300–301, 301a, Feb. 8–12, 2009.
[41]Y. Qiu, C. Van Liempd, B. Op het Veld, P. G. Blanken, and C. Van Hoof, “5 μW-to-10 mW input power range inductive boost converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking Algorithm,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 118–120, Feb. 2011.
[42]G. Yu, K. W. R. Chew, Z. C. Sun, H. Tang, and L. Siek, “A 400 nW Single-Inductor Dual-Input–Tri-Output DC–DC Buck–Boost Converter with Maximum Power Point Tracking for Indoor Photovoltaic Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2758–2772, Nov. 2015.
[43]R. D. Prabha and G. A. Rincón-Mora, “0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2950–2958, Apr. 2016.
[44]Y. H. Wang, Y. W. Huang, P. C. Huang, H. J. Chen, and T. H. Kuo, “A Single-Inductor Dual-Path Three-Switch Converter With Energy-Recycling Technique for Light Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2716–2728, Nov. 2016.
[45]Y. H. Wang, Y. W. Huang, P. C. Huang, H. J. Chen, and T. H. Kuo, “A Single-Inductor Dual-Path Three-Switch Converter With Energy-Recycling Technique for Light Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, Nov. 2016.
[46]H. Shao, X. Li, C. Y. Tsui, and W. H. Ki, “A Novel Single-Inductor Dual-Input Dual-Output DC–DC Converter With PWM Control for Solar Energy Harvesting System,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 8, pp. 1693–1704, Aug. 2014.
[47]A. Shrivastava, N. E. Roberts, O. U. Khan, D. D. Wentzloff, and B. H. Calhoun, “A 10 mV-Input Boost Converter with Inductor Peak Current Control and Zero Detection for Thermoelectric and Solar Energy Harvesting,” IEEE Journal of Solid-State Circuits, vol. 50, no. 8, pp. 1820–1832, Aug. 2015.
[48]G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental Tests of Open-Loop Maximum-Power-Point Tracking Techniques,” Solar Cells, vol. 13, pp. 185–195, Dec. 1984.
[49]D. Y. Lee, H. J. Noh, and D. S. Hyun, “An Improved MPPT Converter with Current Compensation Method for Small Scaled PV-Applications,” in Proc. 28th Annu. Conf. Ind. Electron. Soc., pp. 1113–1118, Nov. 2002.
[50]J. J. Chen, F. C. Yang, and C. C. Chen, “A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits,” IEEE Transactions On Industrial Electronics, vol. 55, no. 3, Mar. 2008.
[51]M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,” Electronics Letters, vol. 35, no. 1, pp. 8–10, Jan. 1999.

無法下載圖示 全文公開日期 2022/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE