簡易檢索 / 詳目顯示

研究生: 林韋盛
Wei-Sheng Lin
論文名稱: 可縮短平衡時間之鋰離子電池組平衡器
An Equalizer with Reduced Balance Time for Li-ion Battery Packs
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
鄧人豪
Jen-Hao Teng
楊宗銘
Chung-Ming Young
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 106
中文關鍵詞: 鋰離子電池雙向同步降升壓轉換器電池平衡器調變責任週期法
外文關鍵詞: Lithium-ion Battery, Bidirectional Synchronous Buck-boost Converter, Equalizer, Varied-duty-cycle Method
相關次數: 點閱:348下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一雙向降升壓轉換器平衡電路,此平衡器電路著重於極簡化的電感式平衡器架構,並且可以在電池與電池組間或電池組與電池組間進行雙向的電量平衡。透過兩種平衡操作模式能夠有效的使電池組中的電池電量達到平衡。
    然而,若本文所使用之雙向降升壓轉換器平衡電路的導通週期皆設定為定值,平衡電流會隨著平衡過程中電池間的電壓差縮小而隨之減少,如此會使得平衡後期的平衡速度減緩,因此本文提出調變責任週期法來進行平衡速度的控制,主要概念為維持平衡電流至定值,使平衡電流不因電池間的電壓差縮小而降低,而此方法將利用電池組中的電池電壓來計算出調變責任週期法所需設定的功率開關責任週期,以保持一恆定的平衡電流。實驗結果顯示與固定責任週期法相比,調變責任週期法能夠有效的減少56%的平衡時間。


    In this thesis, an active balancer circuit for series-connected lithium-ion batteries is proposed. The power stage utilized in this thesis is a synchronous buck–boost converter. Using this topology, bidirectional energy transfers between any cell(s) to any cell(s) can be achieved.
    For the “natural” balancing control strategy presented in the literature, the duty cycle of the synchronous buck–boost converter is kept constant during the whole balancing process. Hence, the balancing current will decrease as the voltage difference between batteries decreases; this will correspondingly increase the balancing time. To deal with this problem, a balancing algorithm named varied-duty-cycle method is proposed. The proposed techniques can adjust the duty cycle value according to the operating condition and thus keep the balancing current nearly constant. Comparing with the “natural” balancing control technique, the proposed
    method can improve the balancing time by 56%.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文大綱 3 第二章 二次電池與平衡電路介紹 4 2.1 二次電池種類簡介 4 2.1.1 鉛酸電池 4 2.1.2 鎳氫電池 5 2.1.3 鋰離子電池 5 2.1.4 二次電池特性比較表 6 2.2 電池相關名詞介紹 7 2.2.1 額定容量(Nominal Capacity): 7 2.2.2 C數(C-rate): 7 2.2.3 額定電壓(Nominal Voltage): 7 2.2.4 自放電(Self-discharge): 7 2.2.5 電池週期(Battery Cycle): 8 2.2.6 電池剩餘容量(SOC, State-of-charge) 8 2.2.7 放電深度(DOD, Depth-of-discharge) 8 2.2.8 電池健康狀態(SOH, State-of-health) 8 2.2.9 電池內阻(Internal Resistance) 9 2.2.10 記憶效應 9 2.3 平衡電路種類 9 2.3.1 電阻式平衡器 11 2.3.2 電容式平衡器 13 2.3.3 直流-直流轉換器式或變壓器式平衡器 15 2.3.4 電感式平衡器 17 第三章 平衡電路架構及元件設計 18 3.1 降升壓電路架構 18 3.1.1 降升壓轉換器電路推導 18 3.1.2 連續導通模式與不連續導通模式分析比較 28 3.2 雙向降升壓平衡電路介紹 29 3.3 雙向降升壓平衡電路設計 33 3.3.1 電感設計 33 3.3.2 開關設計 34 第四章 平衡電路之硬體架構 35 4.1 鋰離子電池規格與參數量測 36 4.1.1 電池充電和阻抗分析實驗 37 4.1.2 電池實驗結果 42 4.2 平衡器周邊電路 44 4.2.1 電壓取樣電路 45 4.2.2 開關驅動電路 46 第五章 韌體架構與控制策略 47 5.1 平衡器韌體架構 47 5.1.1 控制器核心介紹 47 5.1.2 中斷 49 5.1.3 類比-數位轉換模組 51 5.1.4 脈波寬度調變模組 52 5.2 量測平台介紹 53 5.2.1 資料擷取卡應用 54 5.2.2 量測電壓與監控介面 58 5.3 平衡控制策略介紹 59 5.3.1 固定責任週期法 60 5.3.2 調變責任週期法 63 第六章 實驗結果與分析 67 6.1 模擬結果與比較 67 6.1.1 相關模擬參數設定 67 6.1.2 模擬結果 68 6.2 實驗結果與比較 71 6.2.1 實驗量測波形 72 6.2.2 電池平衡曲線 79 6.2.3 平衡結果比較 81 第七章 結論與未來展望 84 7.1 結論 84 7.2 未來展望 85 參考文獻 86

    [1] S. R. BULL, “Renewable Energy Today and Tomorrow,” Proceeding of the IEEE, vol.89, no.8, pp.1216-1226, Aug. 2001.
    [2] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy Storage Systems for Automotive Applications,” IEEE Transactions on Industrial Electronics, vol.55, no.6, pp.2258-2267, Jun. 2008.
    [3] H. Ibrahim, A. Ilinca and J. Perron, “Energy Storge Systems-Characteristics and Comparisons,” Renewable and Sustainable, vol.12, pp.1221-1250, 2008.
    [4] X. Chen, W. Shen and T. Vo, “An Overview of Lithium-ion Batteries for Electric Vehicles,” in Proc. IPEC, pp.230-235, Nov. 2012.
    [5] A. I. Stan, M. Swierczynski, D. I. Stroe, R. Teodorescu and S.J. Andreasen, “Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications—An Overview,” in Proceeding OPTIM, pp.713-720, May 2014.
    [6] J. Chatzakis, K. Kalaitzakis, N. C. Voulgaris and S. N. Manias, “Designing a New Generalized Battery Management System,” IEEE Transactions on Industrial Electronics, vol.50, no.5, pp.990-999, Oct. 2013.
    [7] P. T. Krein and R. S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” in Proceedings of the 24th Annual International Telecommunications Energy Conference (INTELEC), pp.516-523, Sep./Oct. 2002.

    [8] S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Result,” in Proceedings of the 22nd International Telecommunications Energy Conference, pp.439-446, Sep. 2000.
    [9] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, vol.226, pp.272-288, Mar. 2013.
    [10] S. Hong, J. Jiang and X. Li, “A battery management system with two-stage equalization,” in 29th Chinese Control and Decision Conference, 2017.
    [11] C. H. Kim, M. Y. Kim and G. W. Moon, “A Modularized Charge Equalizer Using a Battery Monitoring IC for Series-Connected Li-Ion Battery String in Electric Vehicles,” IEEE Transactions on Power Electronics, vol.28, NO.8, Aug. 2013.
    [12] S. Yarlagadda, T. T. Hartley and I. Husain, “A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Transactions on Industry Applications, vol.49, no.6, Nov. 2013.
    [13] D. V. Cadar, D. M. Petreus and T. M. Pararau, “An Energy converter method for battery cell Balancing,” in Proceedings of the 33rd International Spring Seminar on Electronics Technology, pp.290-293. May. 2010.
    [14] Y. Lee, S. Jeon and S. Bae, “Comparison on Cell Balancing Methods for Energy Storage Applications,” ResearchGate , vol.9, May. 2016.
    [15] S. W. Moore and P. J. Schneider, “A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems,” in Proc. SAE 2001 World Congress, Mar. 2001.

    [16] I. Aizpuru, U. Iraola, J. M. Canales, M. Echeverria and I. Gil, “Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode,” in Proceeding of the 2013 International Conference on Clean Electrical Power, Jun. 2013.
    [17] W. Luo, L. Jie, W. Song and Z. Feng, “Study on passive balancing characteristics of serially connected lithium-ion battery string,” in 13th International Conference on Electronic Measurement & Instruments, 2017.
    [18] D. D. Quinn and T. T. Hartley, “Design of novel charge balancing networks in battery packs,” Journal of Power Sources, vol.240, pp.26-32, 2014.
    [19] H. S. Park, C.H. Kim, K. B. Park, G. W. Moon and J. H. Lee, “Design of a Charge Equalizer Based on Battery Modularization” IEEE Transactions on Power Electronics, vol.58, no.7, pp.3216-3223.
    [20] S. W. Moore and P. J. Schneider, “A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems” in Proceeding of the SAE 2001 World Congress, Mar. 2001.
    [21] M. Daowd, N. Omar, P. V. D. Bossche and J. V. Mierlo, “Passive and Active Battery Balancing Comparison Based on MATLAB Simulation” in Proceeding IEEE Vehicle Power Propul. Conference, pp.1-7, 2011.
    [22] J. W. Kimball and P. T. Krein, “Analysis and design of switched capacitor converters,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, vol.3, pp.1473-1477, 2005.
    [23] Y. Ye and K. W. E. Cheng, “An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings,” Energies, vol.9, no.3, pp.1-15, Feb. 2016.

    [24] M. Y. Kim, C. H. Kim, J. H. Kim and G. W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3989-3999, Aug. 2014.
    [25] Y. S. Lee and M. W. Cheng, “Intelligent Control Battery Equalization for Series Connected Lithium-Ion Battery Strings,” IEEE Transactions on Industrial Electronics, vol.52, no.5, pp.1297-1307, Oct. 2005.
    [26] M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte, C. Kral and J. Fleig, “A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell,” IEEE Transactions on Vehicular Technology, vol.60, no.9, pp.4227-4237, Nov. 2011.
    [27] A. M. Imtiaz and F. H. Khan, “Time Shared Flyback Converter Based Regenerative Cell Balancing Technique for Series Connected Li-Ion Battery Strings,” IEEE Transactions on Power Electronics, vol.28, no.12, pp.5960-5975, Dec. 2013.
    [28] 吳詠嘉,「以模糊控制為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程系碩士學位論文,民國一百零五年七月。
    [29] H. Shen, W. Zhu and W. Chen, “Charge Equalization Using Multiple Winding Magnetic Model for Lithium-ion Battery String,” in Proceeding IEEE 8th ICPE ECCE, pp.285-290, 2011.
    [30] Y. S. Lee and G. T. Chen, “ZCS bi-directional DC-to-DC converter application in battery equalization for electric vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.4, pp.2766-2772, 2004.

    [31] Y. S. Lee, C. Y. Duh, G. T. Chen and S. C. Yang, “Battery Equalization Using Bi-directional Cuk Converter in DCVM Operation,” IEEE Journal of Emerging and Selected Topics in Power Electronics, pp.765-771,2005
    [32] S. H. Park, T. S. Kim, J. S. Park, G. W. Moon and M. J. Yoon, “A new battery equalizer based on buck-boost topology,” IEEE 7th International Conference on Power Electronics, pp.962-965, 2007.
    [33] P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Transactions on Industrial Electronics, vol.57, no.12, pp.3956-3962, Dec. 2010.
    [34] W. Ji, X. Lu, Y. Ji, Y. Tang, F. Ran and F. Z. Peng, “Low cost battery equalizer using buck-boost and series LC converter with synchronous phase-shift control” in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1152-1157, 2013.
    [35] 李世興編譯,「電池活用手冊」,全華科技圖書,民國八十五年一月。
    [36] 屠海令編譯,「先進電池:電化學電源導論」,冶金工業出版社,民國九十五年五月。
    [37] 孫清華編譯,「最新可充式電池技術大全」,全華科技圖書,民國九十二年九月。
    [38] W. Ke and N. Zhang, “Passive Equalization and the Expiration of Battery Packs on Chinese Electric Bicycles,” in Proceeding 2nd IEEE Conf. Industrial Electronics and Applications, pp.1370-1373, 2007.

    [39] Y. Zheng, M. Ouyang, L. Lu, J. Li, X. Han and L. Xu, “On-line Equalization for Lithium-ion Battery Packs Based on Charging Cell Voltage:Part 1. Equalization Based on Remaining Charging Capacity Estimation,” J. Power Sources 247, pp.676-686, 2014.
    [40] F. Mestrallet, L. Kerachev, J. C. Crebier and A.Collet, “Multiphase Interleaved Converter for Lithium Battery Active Balancing,” IEEE Trans. Power Electron, vol.29, no.6, pp.2874–2881, Jun. 2014.
    [41] 吳義利編譯,「切換式電源轉換器」,文笙書局,民國一百零九年。
    [42] G. Gatto, I. Marongiu, A. Perfetto and A. Serpi, “Modelling and Predictive Control of a Buck-Boost DC-DC Converter,” in Proceeding International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp.1430-1435, Jun. 2010.
    [43] 廖柏涵,「以剩餘容量為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程所碩士學位論文,民國一百零七年一月。
    [44] M. Y. Kim, J. H. Kim and G. W. Moon, “Center-Cell Concentration Structure of a Cell-to-Cell Balancing Circuit with a Reduced Number of Switches,” IEEE Transactions Power Electron, vol.29, no.10, pp. 5285-5297, Oct. 2014.
    [45] P. A. Cassani and S. S. Williamson, “Feasibility Analysis of A Novel Cell Equalizer Topology for Plug-in Hybrid Electric Vehicle Energy Storage Systems,” IEEE Transactions Vehicle Technology, vol.58, no.8, pp. 3938–3946, Oct. 2009.
    [46] 呂文隆、張簡士琨、曾國境編譯,「交換式電源設計」,全華科技圖書,2012。
    [47] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,國立台灣科技大學電機工程學系碩士論文,2014年1月。

    [48] Texas Instruments Inc., “TMS320F2833x, TMS320F2823x Digital Signal Controllers (DSCs),” Available:// http://www.ti.com/
    [49] Texas Instruments Inc., “TMS320x2833x Analog-to-Digital Converter (ADC) Module,” Available:// http://www.ti.com/
    [50] Texas Instruments Inc., “TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Module,” Available:// http://www.ti.com/
    [51] 蕭子健、王智昱、儲昭偉,「LabVIEW進階篇」,高立圖書,民國八十九年五月。
    [52] 蕭子健、王智昱、儲昭偉,「虛擬儀控程式設計-LabVIEW7X」,高立圖書,民國九十三年三月。
    [53] 惠汝生編譯,「LabVIEW 8.X圖控程式應用」,全華科技圖書,民國九十五年十月。
    [54] PSIM User's Guide, Powersim Inc. , 2003.

    無法下載圖示 全文公開日期 2024/07/04 (校內網路)
    全文公開日期 2029/07/04 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE