簡易檢索 / 詳目顯示

研究生: 王華翊
Hua-Yi Wang
論文名稱: 利用數值模擬與實驗分析噴油正時對汽油缸內直噴式引擎層狀模式的影響
Numerical Analysis and Experimental Study of Injection Timing Effects on a Gasoline Direct Injection (GDI) Engine under Lean-Stratified Operation
指導教授: 蘇裕軒
Yu-Hsuan Su
姜嘉瑞
Chia-Jui Chiang
口試委員: 吳浴沂
Yuh-Yih Wu
蔡弦錡
Hsien-Chi Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 缸內氣油直噴引擎層狀燃燒噴油正時
外文關鍵詞: GDI, stratified charge, injection timing
相關次數: 點閱:221下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

汽油缸內直接噴射(Gasoline Direct Injection, GDI) 引擎可以在低轉速低負載的操作點下,以層狀燃燒模式(Stratified Mode Operation) 運轉。利用氣缸內整體油氣稀薄,但在部分位置有較濃的燃油分佈的方式達到稀薄燃燒(Lean Combustion),以獲得低油耗並且降低廢氣排放量。若是太早噴油,則可能造成過於均勻卻稀薄的油氣分佈,進而導致燃燒不穩定,而若是太晚噴油,則可能導致燃油沒有足夠的時間氣化或是油氣過度集中在火星塞周遭而無法順利燃燒。本論文運用Ansys Fluent 模擬目標缸內直噴汽油引擎的層狀模式,延續文獻[1] 的模型,探討低轉速(1500rpm)、低負載(Part Load) 的條件下,噴油正時對於缸內流場運動、油滴蒸發以及油氣分佈所造成的影響。並尋找在該操作點下能在點火正時達成適合燃燒的層狀環境的噴油正時區間。由於在實驗中僅能通過調整噴油壓力來控制燃油進入汽缸後的運動行為以及霧化行為,因此本模擬藉由調整燃油液滴的尺寸來使模擬更貼進實驗。並且通過對比汽缸內部溫度分佈與燃油分佈圖來預測是否會在點火正時之前就發生早燃的現象,最終模擬結果顯示當噴油正時介於58◦BTDC76◦BTDC 時,在點火正時火星塞周遭能形成當量濃度的油氣,且缸內分佈當量濃度燃油的位置的溫度在汽油自燃溫度的範圍外。依據此項模擬結果的噴油區間來進行實驗,比對在不同噴油正時下的燃燒行為表現。最終實驗結果顯示,在噴油正時介於54◦BTDC 到72◦BTDC 之間的燃油效率最佳。


With the development of science and technology and the rise of environmentalawareness, people request more and more on the engine performance and pollution emissions. Many scholars pointed out that the use of“gasoline direct injection technology”(Gasoline Direct Injection, GDI) will meet the demands of less fuel consumption, Improve the thermal efficiency and reduce the pollution and so on. Therefore, this paper aims to analyze the fluid motion inside GDI engine by means of numerical simulation, making it possible to find out the way to improve the GDI engine.
GDI technology can reduce the fuel consumption because it can form a thin layer of gasoline in the combustion chamber, the key to the design of thin layered combustion system is the use of different fuel injection timing, so that mixed oil and air distribution layer rather than homogeneous Distribution, if the oil is concentrated in the vicinity of the plug, and other areas of chamber is relatively thin, that can be in the case of a very high overall air-fuel ratio, resulting in sufficient torque, in order to obtain lower fuel consumption. However, the chamber of the internal combustion engine is very complex and difficult to observe. Therefore, this paper uses sc ANSYS FLUENT to simulate the in-cylinder flow field. literature [1] use sc ANSYS GEOMETRY modify the engine geometry given by the vendor, then use sc ANSYS MESH to divide the completed geometric model into grid, and finally enter sc ANSYS FLEUNT to set the numerical model and initial and boundary conditions, Then start the simulation. And find the best timing of injection to make the engine work in stratified charge.

致謝 摘要 英文摘要 本目錄 圖目錄 表目錄 第一章 緒論 第二章 引擎實驗平台架構與設備 第三章數值模型的建立 第四章燃燒分析計算 第五章結果與討論 第六章結論與未來展望 參考文獻

[1] 林芃吾. ” 利用數值模擬分析汽油缸內直噴式引擎之均質燃燒及設計其層狀模式Numerical Analysis of Homogeneous Combustion Behaviors and Stratified Combustion Mode for Gasoline Direct Injection Engine”, Master Thesis, NTUST.2017.
[2] Mohd Faisal Hushim, Ahmad Alimin, Hazlina Selamat, and Mohd Taufiq Muslim.”pfi system for retrofitting small 4-stroke gasoline engines”. pages 375–378, 01 2013.
[3] T. H. Lake, J. Stokes, P. A. Whitaker, and J. V. Crump. ”Comparison of Direct Injection Gasoline Combustion Systems”. In International Congress and Exposition. SAE International, FEB 1998.
[4] J. B. Heywood. Internal combustion engine fundamentals, 2nd ed. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York, 1988.
[5] S.P. Chincholkar and J.G. Suryawanshi. ”Gasoline Direct Injection: An Efficient Technology”. Energy Procedia, 90:666 – 672, 2016. 5th International Conference on Advances in Energy Research (ICAER) 2015.
[6] 吳志勇. ” 缸內直噴引擎gdi 技術的發展與未來”. 國立成功大學航空太空工程研究所, 2008.
[7] H. Friedl, M. Certic, A. Fuerhapter, P. Kapus, K. Koeck, and M. Neubauer.”Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets”. In 22nd SAE Brasil International Congress and Display. SAE International, OCT 2013.
[8] T. TOMODA, M. KUBOTA, R. SHIMIZU, and Y. NOMURA. ”Numerical Analysis of Mixture Formation of a Direct Injection Gasoline Engine”. JSME International Journal Series B Fluids and Thermal Engineering, 46(1):2–9, 2003.
[9] M. Pontoppidan, G. Gaviani, G. Bella, and V. Rocco. ”Direct Fuel Injection – A Study of Injector Requirements for Different Mixture Preparation Concepts”. FEB 1997.
[10] C. Preussner, C. Döring, S. Fehler, and S. Kampmann. ”GDI: Interaction Between Mixture Preparation, Combustion System and Injector Performance”. In International Congress and Exposition. SAE International, FEB 1998.
[11] Y. Yi and C. M. DeMinco. ”Numerical Investigation of Mixture Preparation in a GDI Engine”. In Powertrain and Fluid Systems Conference and Exhibition. SAE International, OCT 2006.
[12] M. Costa, U. Sorge, S. Merola, A. Irimescu, M. La Villetta, and V. Rocco. ”Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission”. Energy, 117:405 – 415, 2016. The 28th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems - ECOS 2015.
[13] L. Allocca and G. Valentino. ”Droplet size and velocity distributions of a transient hollow-cone spray for GDI engines”. Particle and Particle Systems Characterization, 18(5-6):262–270, 2002.
[14] L. Allocca, M. Lazzaro, G. Meccariello, and A. Montanaro. ”Schlieren visualization of a GDI spray impacting on a heated wall: Non-vaporizing and vaporizing evolutions”. Energy, 108:93–98, 2016.
[15] P. J. Shayler, L. D. Winborn, M. J. Hill, and D. Eade. ”The Influence of Gas/Fuel Ratio on Combustion Stability and Misfire Limits of Spark Ignition Engines”. In SAE 2000 World Congress. SAE International, MAR 2000.
[16] 傅勝文. ” 缸內直噴汽油引擎之層狀及均質油氣混合實驗研究Experimental Study on the Stratified and Homogeneous Charge Operation of a Gasoline Direct Injection (GDI) Engine”, Master Thesis, NTUST. 2017.
[17] 盧裕翔. ” 汽油缸內直噴式引擎層狀燃燒模式之油氣分布行為數值模擬分析Numerical Analysis of Fuel Distribution Behaviors in a Stratified Combustion Mode for Gasoline Direct Injection Engine”, Master Thesis, NTUST. 2016.
[18] Bhagyada Dhingra, Sparsh Sharma, Kamalkishore Vora, and B Ashok. ”CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine”. In Symposium on International Automotive Technology 2015. SAE International, JAN 2015.
[19] C. Habchi, D. Verhoeven, C. Huynh Huu, L. Lambert, J. L. Vanhemelryck, and T. Baritaud. ”Modeling Atomization and Break Up in High-Pressure Diesel Sprays”. In SAE International Congress and Exposition. SAE International, FEB 1997.
[20] H. Gurbuz. ”Parametrical Investigation of Heat Transfer with Fast Response Thermocouple in SI Engine”. JOURNAL OF ENERGY ENGINEERING, 142(4), DEC 2016.
[21] E. Zervas, X. Montagne, and J. Lahaye. ”The influence of gasoline formulation on specific pollutant emissions”. Journal of the Air and Waste Management Association, 49(11):1304–1314, 1999.
[22] G. L. Borman and John H. Johnson. ”Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air”. In National Powerplant Meeting.SAE International, JAN 1962.

QR CODE