簡易檢索 / 詳目顯示

研究生: 紀宗毅
Tsung-yi Chi
論文名稱: 變溫成形超高分子量聚乙烯/奈米碳管纖維製備與超高延伸行為之研究
Investigation of Ultradrawing Behavior of Ultra-high Molecular Weight Polyethylene / Carbon Nanotube Fibers formed at varying temperatures
指導教授: 陳耿明
Keng-Ming Chen
口試委員: 葉正濤
Jen-Taut Yeh
陳建智
Cheng-chi Chen
王權泉
Chyung-chyung Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 85
中文關鍵詞: 超高分子量聚乙烯奈米碳管凝膠紡絲
外文關鍵詞: UHMWPE, Carbon Nanotube, gel spinning
相關次數: 點閱:431下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要乃針對不同奈米碳管含量之超高分子量聚乙烯(UHMWPE)/奈米碳管(CNTs)凝膠纺液經不同溫度成形初絲的超延伸、延伸後纖維性能與其對應延伸機理作探討。 結果發現,經各成形溫度所製備的凝膠初絲,其可延伸比隨其內奈米碳管含量增加達到一最適化值時,期可延伸比及比強力性質均達到最高。 另外,值得注意的是,當2wt%凝膠纺液經20℃最適化溫度成形後初絲樣品之可延伸比達到最大值。為了解上述這些有趣之現象,本研究進一步針對這些UHMWPE/CNTs凝膠初絲與延伸後纖維樣品之熱學、雙折射、以及UHMWPE/CNTs凝膠纺液之流變性質進行探討。


In this study, the UHMWPE / CNTs blends were investigated using the gel as-prepared fiber at varying formation temperature cool and their drawing behavior performed in accordance with the ratios. It shows that, by different formation temperature as-spun fibers, the achievable draw ratio of gel fiber increased in proportion to the composed ratio of CNTs.
When formation temperature about 20℃ the achievable draw ratio and tensile strength of gel fiber approached the maximums of 2wt% gel solutions. Further investigations including thermal, birefringence, and rheological were performed on the fiber specimens to clarify the possible deformation mechanisms accounting for their interesting drawing properties found in this study.

論文摘要.....................................................................I ABSTRACT.....................................................................Ⅱ 誌謝.........................................................................Ⅲ 目錄.........................................................................Ⅳ 圖表索引.....................................................................Ⅵ 第一章 前言...................................................................1 第二章 文獻回顧............................................................5 2.1 聚乙烯簡介..............................................................6 2.2 高強力聚乙烯纖維........................................................7 2.2.1 高強力聚乙烯纖維之製造技術..........................................7 2.2.1.1 固態擠出法(solid state extrusion)............................7 2.2.1.2 超延伸法(ultradrawing).......................................8 2.2.1.3 區域延伸法(zone drawing).....................................9 2.2.1.4 表面成長法(surface growth method)...........................10 2.2.1.5 凝膠紡絲法(gel spinning)....................................12 2.2.2 UHMWPE使用凝膠紡絲技術得到高強力纖維的原因.........................13 2.2.3 UHMWPE凝膠紡絲的技術要點...........................................14 2.3 熱拉伸對凝膠原絲形態和結構的影響.......................................16 2.3.1 型態和力學性質.....................................................16 2.3.2 熱性能.............................................................16 2.3.3 聚集態結構.........................................................17 2.4 纖維的橫斷面型態.......................................................18 2.5 奈米碳管簡介...........................................................20 2.5.1 奈米碳管結構.......................................................20 2.5.2 奈米碳管特性.......................................................21 2.5.3 奈米碳管純化.......................................................22 2.5.3.1 氧化法........................................................22 2.5.3.2 過濾法........................................................23 2.6 奈米碳管/高分子複合材料................................................24 2.6.1 奈米碳管/高分子複合材料簡介........................................24 2.6.2 具方向性排列之奈米碳管/高分子複合材料..............................25 第三章 實驗..................................................................32 3.1 UHMWPE/奈米碳管凝膠纖維的製備..........................................32 3.1.1凝膠溶液的製備......................................................32 3.1.2凝膠紡絲條件與流程..................................................33 3.1.3凝膠纖維的熱延伸....................................................34 3.2 凝膠溶液剪切黏度分析...................................................36 3.3 凝膠纖維可延伸性質測定.................................................37 3.4 凝膠纖維分子順向度檢測.................................................38 3.5 凝膠纖維熱學性質分析...................................................39 3.6 凝膠纖維抗張性質分析...................................................40 第四章 結果與討論............................................................41 4.1凝膠溶液剪切黏度分析....................................................41 4.2凝膠纖維初絲熱學性質分析................................................47 4.3凝膠纖維可延伸性測試....................................................52 4.4凝膠纖維抗張性質........................................................56 4.5凝膠纖維分子順向度分析..................................................60 第五章 結論...............................................................65 參考文獻.....................................................................67 作者簡介.....................................................................71

1. P. Smith, P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
2. P. Smith, P. J. Lemstra and H. C. Booij, J. Mater. Sci., 19, 877 (1981).
3. J. Smook, A. J. Pennings, J. Mater. Sci., 19, 31 (1984).
4. P. Smith, P. J. Lemstra, J. P. L. Pippers and, A. M. Kiel, Coll. Polym. Sci., 258, 1070(1981).
5. J. Bore, H. J. Vanden Berg and A. J. Pennings, Polymer, 25, 513 (1984).
6. M. Matsuo and R. St. J. Manley, Macromolecules, 15, 985 (1982).
7. T. Kanamoto, A. Tsuruta, K. tanaka, T. Takeda and R. S. Porter, Polym. J., 15, 327 (1983).
8. K. Furuhata, T. Yokokawa and K. Miyasaka, J. Polym. Sci., Polym. Phys. Ed., 22, 133 (1984).
9. A. Zhang, K. Chen, H. Zhao and Z. Wu, J. Appl. Polym. Sci., 38, 1369 (1989).
10. K. Chen, A. Zhang, P. Lu and Z. Wu, J. Appl. Polym. Sci., 38, 1377 (1989).
11. X. Wang. S. Li and R. Salovey, J. Appl. Polym. Sci., 35, 2165 (1988).
12. A. E. Zacharrriades and R. S. Porter, Ed., "The Strength and Stiffness of Polymer", Marcel Dekker, Inc., New Tork (1983).
13. N. Nakajima, J. Ibata, Japan Patents 57177035, 57177036, 57177037 (1983).
14. C. Sawatari, and M. Matsuo, Polymer, 30, 1603 (1989).
15. I. Simeonov, Z. Nikolova, P. Komitov, K. Naidenova, Bulgarian Patent 31868 (1982).
16. M. Mihailov and L. Minkova, Coll. & Polym.Sci., 265, 681 (1987).
17. Y. L. Huang and N. Brown, Polymer, 33, 2989 (1992).
18. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, , Macromol. Chem. Phys., 197, 3531 (1996).
19. J. T. Yeh and H. C. Wu, , Polym. J., 30, 1 (1998).
20. J. T. Yeh, S. S. Chang and M. S. Yen, J. Appl. Polym. Sci., 70, 149 (1998).
21. J. T. Yeh and S. S. Chang, J. Mater. Sci., 35, 3227 (2000).
22. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001)
23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
24 J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
25.W. M. P:erkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
26.A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
27.D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
28.W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
29.W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
30.W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
31.E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
32.H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
33.M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
34.S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
35.A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
36.A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
37.P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
38.J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
39.P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
40.Eiichi Sasakawa, K-II Business Development Department, Kuraray Co., Ltd., A New Synthetic Fiber, KURALON K-II: Its Charcteristics and New Applications, SEN,I GAKKAISHI Vol. 54, No.1 (1998).
41.Ray H. Baughman, A. A. Zakhidov, Walt. A. de Heer, Sci., C, 297 (2002).
42. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science, 280, 1253(1998).
43. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature, 362, 520(1993).
44. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature, 372, 159 (1995).
45. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Subbanna, C. N. R. Rao, J. Appl. Polym. Sci., 29, 4925(1996).
46. Y. H. Lee, Y. S. Park, Y. C. Choi,K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Carbon, 39, 655 (2001).
47. J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T. Stöckli, C. Duschl, L. Forro, W. A. De Heer, A. Chatelain, Adv. Mater., 9, 827 (1997).
48. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, Chem. Phys., 101, 8839(1997).
49. K. B. Shelimov, R. O. Rinat, A. G. Rinzler, C. B. Huffmann, R. E. Smalley, Chem. Phys. Lett., 282, 429 (1998).
50. J. P. Salvetat, J. M. Bonard, R. R. Bacsa, A. J. Kulk, T. Stock, Physics Review Letters , 82, 944(1999).
51. M. S. P. Shaffer, A. H. Windle, Advanced Materials, 11, 93741(1999).
52. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Applied Physics Letters, 76, 2868 (2000)..
53. V. Lordi, N. Yao, J. Phys. Chem., 15, 2770 (2000).
54. H. D. Wagner, O. Lourie, Y. Feldmen, R. Tenne, Applied Physics Letters, 72, 188 (1998).
55. L. Jin, C. Bower, O. Zhou, J. Applied Physics Letters, 73, 1197 (1998).
56. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett., 330, 219 (2000).
57. R. Andrew, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. Chen,
Applied Physics Letters, 75, 1329 (1999).
58. B. Vigolo, A. Pe´nicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science, 290, 1331(2000).
59. J. C. Kearns, R. L. Shambaugh, J. Appl. Polym. Sci., 86, 2079(2002).
60. S. L. Ruana, P. Gaob, X.G. Yangb, T.X. Yu, Polymer, 44, 5643(2003).

無法下載圖示 全文公開日期 2012/01/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE