簡易檢索 / 詳目顯示

研究生: 葉佾叡
Yi-Jui Yeh
論文名稱: 大氣常壓微電漿輔助一步驟製程 高靈敏性表面增強拉曼光譜之可撓式紙基材
Ultrasensitive Flexible Paper-Based Surface-Enhanced Raman Scattering Substrates with Microplasma-Enabled plasmonic Nanoparticles
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 朱瑾
Jinn P. Chu
劉沂欣
Kyle Y. Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 120
中文關鍵詞: 可撓式基板等離子奈米粒子微電漿系統表面增強拉曼散射核-殼結構分層纖維結構
外文關鍵詞: Flexible substrate, plasmonic nanoparticle, microplasma system, Surface-enhanced Raman scattering, core-shell structure, hierarchical fibrous structure
相關次數: 點閱:367下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,非破壞性表面增強拉曼散射光譜已被廣泛的運用在諸多領上,如生物體內顯影、生醫檢測、重金屬與農藥殘留檢測以及反應即時監等。因為獨特的局部表面電漿共振效應,使得金屬奈米粒子被廣泛地運用在表面增強拉曼散射的技術上。金、銀核殼奈米粒子的局部表面電漿共振效應會隨著結構、核殼的成分比例以及形狀等因素改變而變化,其結構在電漿共振相關領域上已受到廣泛的注目。近年已有數篇文獻證實,金銀的核殼奈米粒子能夠得到比單一金屬奈米粒子(金或銀)更出色的拉曼增強表現。為了得到這個獨特的料,晶種法是最常被使用的合成手段,然而這個方法非常的耗時,製程也相對雜。
然而,用於痕量檢測的表面增強拉曼散射(SERS)基板設計中的重要但經常被忽略的考慮因素之一是樣品收集的效率。 基於剛性基材(如矽,氧化鋁和玻璃)的常規設計會與被調查表面發生共形接觸,從而導致樣品採集效率低下。 因此,我們想展示一種基於吸附有等離激元金屬納米粒子的普通濾紙的新型SERS基質,它可以與現實世界的表面進行保形接觸,從而與傳統的剛性基質相比,大大提高了樣品收集效率。
本論文的研究目的在於開發一步驟製程奈米粒子的技術(包括單銀奈米粒子和金核銀殼的奈米粒子)並負載於可拋棄式紙基材,將它用在表面增強拉曼光譜的應用上。在研究中,我們透過大氣常壓微電漿與液相反應進行金屬奈米粒子的合成。微電漿是一種氣體放電型態,其定義為至少幾何維度小於一毫米的電漿。此外微電漿可與水溶液電極一同作用。透過微電漿內形成的能量物種可以在不含化學還原劑的水溶液環境下驅動電化學反應以及匯聚粒子。根據實驗結果,大氣常壓微電漿反應器可以在數分鐘內快速地合成金屬奈米粒子,我們將此方法進一步延伸到複合兩種金屬的反應。最後,藉由一步驟大氣常壓微電漿與液相反應,在相對短時間內便能取得金核銀殼奈米粒子之紙基材。經過高解析電子顯微鏡分析,發現透過大氣常壓微電漿進行合成,可以得到均勻貼附在金表面的銀奈米殼層。實驗中所合成的材料會經過紫外光光譜、穿透式電子顯微鏡、掃描式電子顯微鏡、拉曼光譜以及 X 光繞射分析儀。
進一步將所得的材料進行有系統的表面增強拉曼散射研究,我們以羅丹明6G作為偵測分子,使用的雷射光波長為532 nm。在我們的系統下發現金核銀殼雙金屬奈米粒子的增強表現在特定的比例下最為顯著相較金、銀奈米粒子也有較強的表面增強拉曼訊號強度。在極限濃度偵測的實驗上,羅丹明6G分子 的偵測極限達到10-15莫爾濃度。與其他使用相同結構的文獻相比,我們的材料具有相對較出色的偵測表現更低的偵測極限且在材料製備也相對的有效率短時間,達到一步驟結合製程奈米金屬與負載奈米金屬於基材的技術。另外,我們也提出立用微電漿系統輔助可能雙殼核奈米金屬的機制
最後,為了測試我們材料作為生物基材的可行性,我們針對生物分子「葉酸」進行偵測,葉酸是人體內重要的維他命 B ,醫學研究指出當葉酸分子低於 10-8 莫爾濃度,身體可能會有健康上的 疑慮。將葉酸做為探測分子進行表面增強拉曼散射的研究,發現當金核銀殼雙金屬奈米粒子作為基材,對葉酸分子的偵測極限可以達到 10-10 莫爾濃度,低於醫學研究所要求的檢測濃度,顯示出此材料在生醫分子感測的應用上極具潛力。


Surface enhanced Raman scattering (SERS) is a non-destructive technology for various applications including in vivo imaging, bio-sensing, heavy metal or pesticide residues and in situ monitoring. Metal nanoparticles have been widely investigated in SERS applications due to their unique localized surface plasmonic resonance (LSPR). Au/Ag core-shell nanoparticles (Au@Ag NPs) allow tuning their LSPR by varying the size and shape of the core or thickness of the shell and even producing stronger SERS activity in comparison with monometallic Au and Ag NPs. Therefore, they have attracted a lot of attention recently. To synthesis this attracted material, seed-mediated growth is the most widely used method. However, this conventional approach is usually time-consuming and laborious.
However, one of the important but often overlooked considerations in the design of surface-enhanced Raman scattering (SERS) substrates for trace detection is the efficiency of sample collection. Conventional designs based on rigid substrates such as silicon, alumina, and glass resist conformal contact with the surface under investigation, making the sample collection inefficient. So we want to demonstrated the demonstrate a novel SERS substrate based on common filter paper adsorbed with plasmonic metal nanoparticles, which allows conformal contact with real-world surfaces, thus dramatically enhancing the sample collection efficiency compared to conventional rigid substrates.
In our report, we present a facile synthesis of Ag nanoparticles and Au@Ag bimetallic nanoparticles deposited on the filter paper using a novel atmospheric-pressure microplasma-assisted electrochemistry. Microplasmas are defined as gaseous discharges formed in electrode geometries where at least one dimension is less than 1mm. Due to surface volume change, microplasmas can be operated stably with an aqueous solution as an electrode at atmospheric pressure. Energetic species formed in the microplasma is capable of initiating electrochemical reactions and nucleating particles in solution without chemical reducing agents. In our results, we demonstrated one-step fabrication metal nanoparticles / filter paper. That is meaning we can synthesis MNP and deposit that on the filter paper in the same time. Another we synthesized Au@Ag core-shell bimetallic NPs in a minute time scale microplasma system. In comparison to seed-mediated growth, microplasma system not only can constitute Au@Ag NPs but also make the Ag shell forming on the Au surface more homogeneous instead of randomly attached Ag atoms. As-produced samples were characterized by UV-vis, TEM, XRD, and Raman.
We further systematic studied the SERS performance of Au@Ag NP /filter paper and Au@Ag core-shell bimetallic nanostructure showed superior enhancement of SERS activity than Au, Ag NPs. The limit of detection of R6G molecules can be as low as 1 fM and high enhancement factor of 5 x 1013. It allows the SERS detection at single molecule level in R6G analysis. We further systematically studied to propose mechanism of Au@Ag NPs formation in one-step microplasma process. In addition, for the purpose of bio-molecule sensing, we demonstrate the feasibility of using Au@Ag NPs as the SERS substrate for detecting the folic acid (FA) molecule. The result show that the limit of detection of FA can achieve 1 femimolar-level detection.

1. Introduction 1-1 Surface-enhanced Raman scattering (SERS)……………………...…....1 1-1-1 Electromagnetic enhancement mechanism (EM )....................3 1-1-2 Chemical enhancement mechanism (CM)…………………....8 1-2 Core-Shell structure for SERS measurement…………………………10 1-3 Introduction of microplasma…………………………………………...14 1-4 Introduction of plasma-assisted liquid reaction………………………16 1-5 Paper-based SERS strip for SERS measurement…………………….21 1-6 Introduction of SERS-based folic acid detection……………………..29 2. Experiment section 2-1 Chemicals …………………………………………………………….....31 2-2 Apparatus ……………………………………………………………….31 2-2-1 Ultraviolet-Visible spectroscopy(UV-Vis)………………………31 2-2-2 High-Resolution Transmission Electron Microscopy…………. 32 2-2-3 X-Ray photo eletctron spectroscopy………………………….…32 2-2-4 Raman spectroscopy………………………………………....…..32 2-2-5 Fourier-transform infrared spectroscopy (FT-IR)…………….33 2-2-6 High-Resolution field –emission scanning electron…………....33 2-2-7 Ultraviolet photoelectron spectroscopy(UPS)………………….33 2-2-8 X-ray diffraction (XRD)………………………………………...33 2-2-9 4-point probe……………………………………………………..33 2-3 Microplasma –liquid system…………………………………………...34 2-3-1 Three-step synthesis by drop………………………………….35 2-3-2 Two-step synthesis by immersion method……………………35 2-3-3 One-step synthesis by microplasma system …………………35 2-4 Fabrication of SERS substrate ……………… ….……………………36 2-5 Enhance factor (EF) calculation…………………………………………… 37 3. Result and Discussion ……………………………………………………………39 3.1. Ag NP / filter paper 3.1.1 Microplasma electrochemistry reaction for silver NPs synthesis …...39 3.1.2 Microplasma electrochemistry reaction for deposition process……..46 3.1.3 Surface-enhanced Raman scattering for Ag / filter paper……..…….56 3.1.4 Ag / filter paper for 4-Nitrophenol degradation………………………65 3.2 Au@Ag NP / filter paper 3.2.1 Microplasma electrochemistry reaction for Au@Ag NPs synthesis .70 3.2.2 Microplasma electrochemistry reaction for deposition process……80 3.2.3 Surface-enhanced Raman Scattering for Au@Ag NP/filter paper ..83 3.2.4 SERS-base for Folic acid……………………….……………………..93 4.Conclusion…………………………………………………………………...…………97 5.Reference……………………………………………………………………………….99

1. GyoáKoo, I., et al., Platinum nanoparticles prepared by a plasma-chemical reduction method. Journal of Materials Chemistry, 2005. 15(38): p. 4125-4128.
2. Nakasugi, Y., et al., Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. Journal of Applied Physics, 2014. 115(12): p. 123303.
3. Fleischmann, M., P. Hendra, and A. McQuillan, RAMAN SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELEC. Chemical Physics Letters, 1974. 26(2).
4. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
5. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
6. Xu, H., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters, 1999. 83(21): p. 4357.
7. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
8. Pettinger, B., et al., Surface‐enhanced and STM‐tip‐enhanced Raman Spectroscopy at Metal Surfaces. Single Molecules, 2002. 3(5‐6): p. 285-294.
9. Dresselhaus, M., G. Dresselhaus, and A. Jorio, Raman spectroscopy of carbon nanotubes in 1997 and 2007. The Journal of Physical Chemistry C, 2007. 111(48): p. 17887-17893.
10. Vendrell, M., et al., Surface-enhanced Raman scattering in cancer detection and imaging. Trends in biotechnology, 2013. 31(4): p. 249-257.
11. Schlücker, S., Surface‐Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795.
12. Zou, F., et al., Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Applied Materials & Interfaces, 2015. 7(22): p. 12168-12175.
13. Pang, S., T. Yang, and L. He, Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 2016. 85: p. 73-82.
14. Dincer, C., et al., Disposable sensors in diagnostics, food, and environmental monitoring. Advanced Materials, 2019. 31(30): p. 1806739.
15. Schatz, G.C., M.A. Young, and R.P. Van Duyne, Electromagnetic mechanism of SERS, in Surface-enhanced Raman scattering. 2006, Springer. p. 19-45.
16. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
17. Xu, X., et al., Fabrication and robotization of ultrasensitive plasmonic nanosensors for molecule detection with Raman scattering. Sensors, 2015. 15(5): p. 10422-10451.
18. Aroca, R., Surface-enhanced vibrational spectroscopy. 2006: John Wiley & Sons.
19. Persson, B.N.J., K. Zhao, and Z. Zhang, Chemical contribution to surface-enhanced Raman scattering. Physical review letters, 2006. 96(20): p. 207401.
20. Le Ru, E., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
21. Wustholz, K.L., et al., Structure− activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2010. 132(31): p. 10903-10910.
22. Deepak, F.L., Metal Nanoparticles and Clusters: Advances in Synthesis, Properties and Applications. 2017: Springer.
23. Xu, H., et al., Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS Nano, 2011. 5(7): p. 5338-5344.
24. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073.
25. Lombardi, J.R. and R.L. Birke, Theory of surface-enhanced Raman scattering in semiconductors. The Journal of Physical Chemistry C, 2014. 118(20): p. 11120-11130.
26. Vivoni, A., et al., Ab initio frequency calculations of pyridine adsorbed on an adatom model of a SERS active site of a silver surface. The Journal of Physical Chemistry B, 2003. 107(23): p. 5547-5557.
27. Cardini, G. and M. Muniz-Miranda, Density functional study on the adsorption of pyrazole onto silver colloidal particles. The Journal of Physical Chemistry B, 2002. 106(27): p. 6875-6880.
28. Wu, D.-Y., et al., Density functional study and normal-mode analysis of the bindings and vibrational frequency shifts of the pyridine− M (M= Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) complexes. The Journal of Physical Chemistry A, 2002. 106(39): p. 9042-9052.
29. Mélinon, P., et al., Engineered inorganic core/shell nanoparticles. Physics Reports, 2014. 543(3): p. 163-197.
30. Gawande, M.B., et al., Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015. 44(21): p. 7540-7590.
31. Li, J.-F., et al., Core–shell nanoparticle-enhanced Raman spectroscopy. Chemical Reviews, 2017. 117(7): p. 5002-5069.
32. Talley, C.E., et al., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Letters, 2005. 5(8): p. 1569-1574.
33. Loo, C., et al., Nanoshell-enabled photonics-based imaging and therapy of cancer. Technology in Cancer Research & Treatment, 2004. 3(1): p. 33-40.
34. Mohan, S. and B. Subramanian, Surface enhanced raman scattering studies of silver-gold normal and inverted core-shell nanostructures on their efficiency of detecting molecules. Procedia Engineering, 2014. 92: p. 19-25.
35. Mott, D.M., et al., Electronic transfer as a route to increase the chemical stability in gold and silver core–shell nanoparticles. Advances in Colloid and Interface Science, 2012. 185: p. 14-33.
36. Chen, P., et al., In-situ monitoring reversible redox reaction and circulating detection of nitrite via an ultrasensitive magnetic Au@ Ag SERS substrate. Sensors and Actuators B: Chemical, 2018. 256: p. 107-116.
37. Yang, Y., et al., Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering. Scripta Materialia, 2008. 58(10): p. 862-865.
38. Liu, B., et al., Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analytical Chemistry, 2012. 84(1): p. 255-261.
39. Lim, D.-K., et al., Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature materials, 2010. 9(1): p. 60-67.
40. Zhao, Y., et al., A flexible chemical vapor deposition method to synthesize copper@ carbon core–shell structured nanowires and the study of their structural electrical properties. New Journal of Chemistry, 2012. 36(5): p. 1161-1169.
41. Shen, A., et al., Triplex Au–Ag–C core–shell nanoparticles as a novel raman label. Advanced Functional Materials, 2010. 20(6): p. 969-975.
42. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501.
43. Park, S.-J. and J.G. Eden, 13–30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures. Applied Physics Letters, 2002. 81(22): p. 4127-4129.
44. Moselhy, M., et al., Excimer emission from microhollow cathode argon discharges. Journal of Physics D: Applied Physics, 2003. 36(23): p. 2922.
45. Lin, L. and Q. Wang, Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
46. Ostrikov, K. and A. Murphy, Plasma-aided nanofabrication: where is the cutting edge? Journal of Physics D: Applied Physics, 2007. 40(8): p. 2223.
47. Samukawa, S., et al., The 2012 plasma roadmap. Journal of Physics D: Applied Physics, 2012. 45(25): p. 253001.
48. Gubkin, J., Electrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung. Annalen der Physik, 1887. 268(9): p. 114-115.
49. Hickling, A. and M. Ingram, Glow-discharge electrolysis. Journal of Electroanalytical Chemistry (1959), 1964. 8(1): p. 65-81.
50. Locke, B.R. and S.M. Thagard, Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chemistry and Plasma Processing, 2012. 32(5): p. 875-917.
51. Yonezawa, T., et al., Preparation of zinc oxide nanoparticles by using microwave-induced plasma in liquid. Chemistry Letters, 2010. 39(7): p. 783-785.
52. Sengupta, S.K. and O.P. Singh, Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes. Journal of Electroanalytical Chemistry, 1994. 369(1-2): p. 113-120.
53. Rumbach, P., et al., The solvation of electrons by an atmospheric-pressure plasma. Nature Communications, 2015. 6(1): p. 1-7.
54. Tochikubo, F., et al., Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid. Japanese Journal of Applied Physics, 2014. 53(12): p. 126201.
55. Baba, K., T. Kaneko, and R. Hatakeyama, Efficient synthesis of gold nanoparticles using ion irradiation in gas–liquid interfacial plasmas. Applied Physics Express, 2009. 2(3): p. 035006.
56. Hieda, J., N. Saito, and O. Takai, Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2008. 26(4): p. 854-856.
57. Du, C. and M. Xiao, Cu 2 O nanoparticles synthesis by microplasma. Scientific Reports, 2014. 4(1): p. 1-5.
58. Stewart, M.E., et al., Nanostructured plasmonic sensors. Chemical reviews, 2008. 108(2): p. 494-521.
59. Ko, H., S. Singamaneni, and V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small, 2008. 4(10): p. 1576-1599.
60. Camden, J.P., et al., Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Accounts of Chemical Research, 2008. 41(12): p. 1653-1661.
61. Anker, J.N., et al., Biosensing with plasmonic nanosensors, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 308-319.
62. Banholzer, M.J., et al., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2008. 37(5): p. 885-897.
63. Im, H., et al., Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano letters, 2010. 10(6): p. 2231-2236.
64. Brolo, A.G., et al., Nanohole-enhanced Raman scattering. Nano Letters, 2004. 4(10): p. 2015-2018.
65. Moore, D.S., Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 2004. 75(8): p. 2499-2512.
66. Martinak, D. and A. Rudolph. Explosives detection using an ion mobility spectrometer for airport security. in Proceedings IEEE 31st Annual 1997 International Carnahan Conference on Security Technology. 1997. IEEE.
67. Teixeira, A., et al., Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor. Applied Sciences, 2019. 9(7): p. 1387.
68. Kaushik, M., et al., Reversing aggregation: direct synthesis of nanocatalysts from bulk metal. Cellulose nanocrystals as active support to access efficient hydrogenation silver nanocatalysts. Green Chemistry, 2016. 18(1): p. 129-133.
69. Tang, L. and C. Weder, Cellulose whisker/epoxy resin nanocomposites. ACS Applied Materials & Interfaces, 2010. 2(4): p. 1073-1080.
70. Kruithof, E.K., et al., Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. 1984.
71. Vo-Dinh, T., et al., Surface-enhanced Raman spectrometry for trace organic analysis. Analytical Chemistry, 1984. 56(9): p. 1667-1670.
72. Villa, A.D., et al., Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2015. 18(1): p. 4.
73. Devlin, J., et al., Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
74. Teslova, T., et al., Raman and surface‐enhanced Raman spectra of flavone and several hydroxy derivatives. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2007. 38(7): p. 802-818.
75. Wang, Z., et al., Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224, 2016.
76. Rasmussen, S., et al., Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 2015. 163(3): p. 571-582.
77. Liu, H.-L., et al., Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Applied Physics Letters, 2014. 105(20): p. 201905.
78. Ren, W., Y. Fang, and E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano, 2011. 5(8): p. 6425-6433.
79. Stokes, R.J., et al., Surface-enhanced Raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Applied Spectroscopy, 2008. 62(4): p. 371-376.
80. Ahmad, R., et al., Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid. Chemical Communications, 2015. 51(47): p. 9678-9681.
81. Sun, Y. and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002. 298(5601): p. 2176-2179.
82. Yasin, H., et al., Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles. Materials Research Express, 2019. 6(10): p. 1050a2.
83. Zhang, P., et al., In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale, 2011. 3(8): p. 3357-3363.
84. Li, J., C.-y. Liu, and Y. Liu, Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. Journal of Materials Chemistry, 2012. 22(17): p. 8426-8430.
85. Alshehri, S.M., et al., Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol. Carbohydrate Polymers, 2016. 151: p. 135-143.
86. Turkevich, J., P.C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951. 11: p. 55-75.
87. Ji, X., et al., Size control of gold nanocrystals in citrate reduction: the third role of citrate. Journal of the American Chemical Society, 2007. 129(45): p. 13939-13948.
88. Samal, A.K., et al., Size tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir, 2013. 29(48): p. 15076-15082.
89. Pinto, R.J., et al., Composites of cellulose and metal nanoparticles. Nanocomposites–New Trends and Developments, 2012.
90. Zhang, M., et al., Rationally designed graphene/bilayer silver/Cu hybrid structure with improved sensitivity and stability for highly efficient SERS sensing. ACS Omega, 2018. 3(5): p. 5761-5770.
91. Liu, S., et al., Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 227: p. 117664.
92. Parnsubsakul, A., et al., Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Carbohydrate Polymers, 2020. 235: p. 115956.
93. Ogundare, S.A. and W.E. van Zyl, Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 570: p. 156-164.
94. Chen, J., et al., Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydrate Polymers, 2019. 205: p. 596-600.
95. Araújo, A., et al., Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017. 2(1): p. 014001.
96. Zhang, S., et al., Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS Applied Materials & Interfaces, 2018. 10(21): p. 18380-18389.
97. Yang, J., et al., A sandwich substrate for ultrasensitive and label-free SERS spectroscopic detection of folic acid/methotrexate. Biomedical Microdevices, 2014. 16(5): p. 673-679.

無法下載圖示 全文公開日期 2025/08/12 (校內網路)
全文公開日期 2025/08/12 (校外網路)
全文公開日期 2025/08/12 (國家圖書館:臺灣博碩士論文系統)
QR CODE