簡易檢索 / 詳目顯示

研究生: HOGIARTHA SUTIONO
HOGIARTHA - SUTIONO
論文名稱: Facile Synthesis Procedure of TiO2 Core(Rutile)-Shell(Anatase) Nanorods as a Highly Efficient Solar Water-Splitter
Facile Synthesis Procedure of TiO2 Core(Rutile)-Shell(Anatase) Nanorods as a Highly Efficient Solar Water-Splitter
指導教授: 黃炳照
Bing-Joe Hwang
陳良益
Liang-Yih Chen
口試委員: 蘇威年
Wei-Nien Su
陳景翔
Ching-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 142
中文關鍵詞: 水熱法銳鈦礦-金紅石相共存核-殼結構二氧化鈦奈米棒光陽極光觸媒光電化學水分解反應
外文關鍵詞: hydrothermal, anatase-rutile coexistence, core-shell structure, TiO2 nanorods, photoanode, photocatalyst, photoelectrochemical water-splitting
相關次數: 點閱:331下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,直接於氟摻雜氧化錫導電玻璃上進行二氧化鈦奈米柱陣列的成長,且其晶體成長行可以簡單地方式進行控制。由實驗的結果看來,在水熱法合成過程中,鐵氟龍反應器內的氟摻雜氧化錫導電玻璃基板的方位對於調控晶體生長方向是非常重要的關鍵。藉由改變氟摻雜氧化錫導電玻璃基板的位置,會得到不同於一般晶體性質的二氧化鈦奈米柱陣列。令人感到興趣的是,此二氧化鈦奈米柱陣列在1.23 VRHE下可以產生2.32 mA cm-2的飽和光電流密度值,遠遠高於其他文獻以二氧化鈦作為光陽極進行分解水所得到的電流密度。此一不尋常的發現我們認為是:由於結晶特性顯著地增強光電化學水分解性能。直到發現在二氧化鈦奈米柱系統中的銳鈦礦相覆蓋於金紅石相二氧化鈦奈米柱的(110)和(101)面,使其有優越的光水分解的性能。而此銳鈦礦相的部份,可以藉由拉曼光譜分析獲得證實。當銳鈦礦相的二氧化鈦奈米材料存在時,可促進電荷分離並提升光電化學電池光水分解表現的主要原因。此外,藉由添加特定鹽類的飽和水溶液,不僅可以調節二氧化鈦奈米柱之間的相互作用,更可以控制二氧化鈦奈米柱陣列中部分的銳鈦礦,促進在電極和電解液之間的電荷轉移。至於二氧化鈦奈米柱中的金紅石和銳鈦礦相之間的排列,我們預期銳鈦礦是自然地形成在二氧化鈦奈米柱表面(銳鈦礦相為殼層部分),此部份可由穿透式電子顯微鏡進行分析的結果證實這個推論。此外,藉由改變燒結溫度來研究相變化及其對光電化學電池光分解水的影響。值得一提的是,銳鈦礦相的存在不是唯一提升光電化學電池光分解水表現的影響因素;金紅石的特殊晶體特性也可能是本研究中得到卓越的光電流表現原因之一。


    In this study, the crystal growth behavior of TiO2 nanorods (NRs) array, which was directly grown on the FTO substrate, could be controlled through a simple procedure. It was found that the position of FTO substrate inside the Teflon-liner during hydrothermal synthesis was strikingly important to control the preferred crystal growth direction. By simply changing the position of FTO substrate, TiO2 NRs array with unusual crystallographic properties could be obtained. Interestingly, it could produce a remarkable saturation photocurrent of 2.32 mA cm-2 at 1.23 VRHE which outclassed any published reports for pristine TiO2 photoanode water-splitter. Initially, the finding of unusual crystallographic properties ((110) and (101) facets) was believed severely enhanced the photoelectrochemical (PEC) water-splitting performance. But, after the anatase phase was found in the NRs system, the exact role of (110) and (101) facets towards this superior PEC water-splitting performance became obscured. The existence of anatase phase, which was revealed by Raman spectroscopy technique, was considered to be the main factor in improving charge separation and PEC water-splitting performance simultaneously. The strategy of adding saturated aqueous solution of a particular salt additive into the crystal growth solution not only could modulate the interaction between NRs, but also could control the portion of anatase phase in the NRs system. It was understandable that the wider distance between NRs could enlarge the accessible surface area of the NRs which could facilitate a better charge transfer in the electrode/electrolyte interface. Regarding the arrangement between rutile and anatase phases in the NRs, it was predicted that the anatase phase was naturally formed on the surface of NRs (anatase phase acted as the shell part). This prediction got confirmed by the Transmission Electron Microscopy (TEM) and Tip Enhanced Raman Spectroscopy (TERS) results which were taken from the edge of the nanorod. In addition, annealing temperature variation was selected to investigate the phase transformation and its effect on PEC water-splitting performance. Lastly, it is noteworthy that the existence of anatase phase was not the only factor that could enhance the PEC water-splitting performance. The unusual crystallographic properties of the rutile core part as the result of FTO substrate position modification during hydrothermal synthesis, was believed also responsible in this superior performance.

    ABSTRACT iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xvii LIST OF SCHEMES xix CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 9 2.1. Semiconductor 9 2.2. Steps in Photocatalytic Water-Splitting 10 2.3. The Photoelectrochemical Cell 13 2.4. Photoelectrode Requirements and Cell Configurations 15 2.5. Titanium Dioxide (TiO2) 20 2.6. TiO2 Nanomaterial for Water-Splitter: Synthesis and Modification 26 2.7. Controlling the Growth Behavior of the Crystal 32 2.8. Coexistence of Anatase and Rutile Phases 34 2.9. NaCl as TiO2 Crystal Modifying Agent 36 CHAPTER 3 EXPERIMENT PROCEDURES & CHARACTERIZATION TOOLS 39 3.1. Materials 39 3.2. Equipments 39 3.3. Synthesis of TiO2 Nanorods Crystal Array 40 3.4. Material Characterization 42 CHAPTER 4 RESULTS AND DISCUSSION 51 4.1. Engineer the Crystal Growth Behavior 51 4.2. Heat Treatment Effect on Crystallographic Properties 54 4.3. Nanorod Crystal Morphology: Original Procedure vs Modified Procedure 58 4.4. Proposed Growth Mechanism 59 4.5. TEM, SAED, and XRD are Consistent 60 4.6. Superior PEC Water-Splitting Performance with Good Stability 61 4.7. Raman Study: Anatase Phase Exists in the Crystal System 64 4.8. NaCl as Morphology Modifying Agent 68 4.9. NaCl Improves PEC Water-Splitting Ability 74 4.10. Easy Preparation as a Shortcut to Break the World Record Efficiency 77 4.11. Good Stability Indicating Good Charge Injection 79 4.12. Optical Characteristic Remains Unchanged: without Dopant Incorporation 82 4.13. NaCl Improves IPCE in UV Region 84 4.14. Raman: NaCl Controls the Anatase Portion 86 4.15. Naturally Formed Core(Rutile)-Shell(Anatase) Structure 90 4.16. Annealing Temperature Variation and Anatase Portion 95 CHAPTER 5 CONCLUSIONS AND PERSPECTIVES 101 5.1. Conclusions 101 5.2. Perspectives 101 REFERENCES 103

    1. R. van de Krol, M. Gratzel., Photoelectrochemical Hydrogen Production, in Electronic Materials: Science & Technology. 2012, Springer US. p. 3.
    2. I. Allison, N. L. B., R.A. Bindschadler, P.M. Cox, N. de Noblet, M.H. England, J.E. Francis, N. Gruber, A.M. Haywood, D.J. Karoly, G. Kaser, C. Le Quere, T.M. Lenton, M.E. Mann, B.I. McNeil, A.J. Pitman, S. Rahmstorf, E. Rignot, H.J. Schellnhuber, S.H. Schneider, S.C. Sherwood, R.C.J. Somerville, K.Steffen, E.J. Steig, M. Visbeck, A.J. Weaver, The Copenhagen Diagnosis: Updating the world on the Latest Climate Science. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, 2009.
    3. Jeremy Oppenheim, E. D. B., Climate Change and The Economy - Myths versus Realities. McKinsey & Company, 2009.
    4. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    5. Bak, T., J. Nowotny, M. Rekas, and C. C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. International Journal of Hydrogen Energy, 2002. 27(10): p. 991-1022.
    6. Liu, M., N. de Leon Snapp, and H. Park, Water photolysis with a cross-linked titanium dioxide nanowire anode. Chemical Science, 2011. 2(1): p. 80-87.
    7. Park, J. H., S. Kim, and A. J. Bard, Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 2005. 6(1): p. 24-28.
    8. Hwang, Y. J., C. Hahn, B. Liu, and P. Yang, Photoelectrochemical Properties of TiO2 Nanowire Arrays: A Study of the Dependence on Length and Atomic Layer Deposition Coating. ACS Nano, 2012. 6(6): p. 5060-5069.
    9. Hwang, Y. J., A. Boukai, and P. Yang, High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity. Nano Letters, 2008. 9(1): p. 410-415.
    10. Mor, G. K., K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 2004. 5(1): p. 191-195.
    11. Jung, H. S., J.-K. Lee, J. Lee, B. S. Kang, Q. Jia, M. Nastasi, J. H. Noh, C.-M. Cho, and S. H. Yoon, Mobility Enhanced Photoactivity in Sol−Gel Grown Epitaxial Anatase TiO2 Films. Langmuir, 2008. 24(6): p. 2695-2698.
    12. Lin, Y., S. Zhou, X. Liu, S. Sheehan, and D. Wang, TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. Journal of the American Chemical Society, 2009. 131(8): p. 2772-2773.
    13. Khan, S. U. M., M. Al-Shahry, and W. B. Ingler, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science, 2002. 297(5590): p. 2243-2245.
    14. Ni, M., M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
    15. Li, Y. and J. Z. Zhang, Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser & Photonics Reviews, 2010. 4(4): p. 517-528.
    16. Walter, M. G., E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar Water Splitting Cells. Chemical Reviews, 2010. 110(11): p. 6446-6473.
    17. Linsebigler, A. L., G. Lu, and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 1995. 95(3): p. 735-758.
    18. Kavan, L., M. Gratzel, S. E. Gilbert, C. Klemenz, and H. J. Scheel, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. Journal of the American Chemical Society, 1996. 118(28): p. 6716-6723.
    19. Kawahara, T., Y. Konishi, H. Tada, N. Tohge, J. Nishii, and S. Ito, A Patterned TiO2(Anatase)/TiO2(Rutile) Bilayer-Type Photocatalyst: Effect of the Anatase/Rutile Junction on the Photocatalytic Activity. Angewandte Chemie International Edition, 2002. 41(15): p. 2811-2813.
    20. Miyagi, T., M. Kamei, T. Mitsuhashi, T. Ishigaki, and A. Yamazaki, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chemical Physics Letters, 2004. 390(4–6): p. 399-402.
    21. Nakajima, H., T. Mori, Q. Shen, and T. Toyoda, Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: Influence of charge transfer between the nanoparticles on their photoluminescence excitation bands. Chemical Physics Letters, 2005. 409(1–3): p. 81-84.
    22. Cho, I. S., Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Letters, 2011. 11(11): p. 4978-4984.
    23. Yang, J.-S., W.-P. Liao, and J.-J. Wu, Morphology and Interfacial Energetics Controls for Hierarchical Anatase/Rutile TiO2 Nanostructured Array for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2013. 5(15): p. 7425-7431.
    24. Huang, H., L. Pan, C. K. Lim, H. Gong, J. Guo, M. S. Tse, and O. K. Tan, Hydrothermal Growth of TiO2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells. Small, 2013. 9(18): p. 3153-3160.
    25. Pan, L., H. Huang, C. K. Lim, Q. Y. Hong, M. S. Tse, and O. K. Tan, TiO2 rutile-anatase core-shell nanorod and nanotube arrays for photocatalytic applications. RSC Advances, 2013. 3(11): p. 3566-3571.
    26. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    27. Cho, I. S., C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, and X. Zheng, Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat Commun, 2013. 4: p. 1723.
    28. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
    29. Bach, U., D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
    30. Gratzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
    31. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663.
    32. Crossland, E. J. W., N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber, and H. J. Snaith, Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013. 495(7440): p. 215-219.
    33. Fujishima, A., X. Zhang, and D. A. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
    34. Chen, H., C. E. Nanayakkara, and V. H. Grassian, Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chemical Reviews, 2012. 112(11): p. 5919-5948.
    35. Kubacka, A., M. Fernandez-Garcia, and G. Colon, Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2011. 112(3): p. 1555-1614.
    36. Chen, X., S. Shen, L. Guo, and S. S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews, 2010. 110(11): p. 6503-6570.
    37. Chen, C., W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010. 39(11): p. 4206-4219.
    38. Liu, L. M., B. McAllister, H. Q. Ye, and P. Hu, Identifying an O2 Supply Pathway in CO Oxidation on Au/TiO2(110):  A Density Functional Theory Study on the Intrinsic Role of Water. Journal of the American Chemical Society, 2006. 128(12): p. 4017-4022.
    39. Maeda, Y., Y. Iizuka, and M. Kohyama, Generation of Oxygen Vacancies at a Au/TiO2 Perimeter Interface during CO Oxidation Detected by in Situ Electrical Conductance Measurement. Journal of the American Chemical Society, 2012. 135(2): p. 906-909.
    40. Chen, M. S. and D. W. Goodman, The Structure of Catalytically Active Gold on Titania. Science, 2004. 306(5694): p. 252-255.
    41. Froschl, T., U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. J. Behm, N. Husing, U. Kaiser, K. Landfester, and M. Wohlfahrt-Mehrens, High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chemical Society Reviews, 2012. 41(15): p. 5313-5360.
    42. Green, I. X., W. Tang, M. Neurock, and J. T. Yates, Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst. Science, 2011. 333(6043): p. 736-739.
    43. Etgar, L., W. Zhang, S. Gabriel, S. G. Hickey, M. K. Nazeeruddin, A. Eychmuller, B. Liu, and M. Gratzel, High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets. Advanced Materials, 2012. 24(16): p. 2202-2206.
    44. Kim, Y.-G., J. Walker, L. A. Samuelson, and J. Kumar, Efficient Light Harvesting Polymers for Nanocrystalline TiO2 Photovoltaic Cells†. Nano Letters, 2003. 3(4): p. 523-525.
    45. Slooff, L. H., J. M. Kroon, J. Loos, M. M. Koetse, and J. Sweelssen, Influence of the Relative Humidity on the Performance of Polymer/TiO2 Photovoltaic Cells. Advanced Functional Materials, 2005. 15(4): p. 689-694.
    46. Hu, Y. S., L. Kienle, Y. G. Guo, and J. Maier, High Lithium Electroactivity of Nanometer-Sized Rutile TiO2. Advanced Materials, 2006. 18(11): p. 1421-1426.
    47. Guo, Y. G., Y. S. Hu, W. Sigle, and J. Maier, Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks. Advanced Materials, 2007. 19(16): p. 2087-2091.
    48. Bruce, P. G., B. Scrosati, and J.-M. Tarascon, Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition, 2008. 47(16): p. 2930-2946.
    49. Ohno, T., K. Sarukawa, and M. Matsumura, Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry, 2002. 26(9): p. 1167-1170.
    50. Aoyama, Y., Y. Oaki, R. Ise, and H. Imai, Mesocrystal nanosheet of rutile TiO2 and its reaction selectivity as a photocatalyst. CrystEngComm, 2012. 14(4): p. 1405-1411.
    51. Liu, B. and E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009. 131(11): p. 3985-3990.
    52. (Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials. Advances in Physical Chemistry, 2011. 2011.
    53. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    54. van de Krol, R., Y. Liang, and J. Schoonman, Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry, 2008. 18(20): p. 2311-2320.
    55. Weber, M. F. and M. J. Dignam, Splitting water with semiconducting photoelectrodes—Efficiency considerations. International Journal of Hydrogen Energy, 1986. 11(4): p. 225-232.
    56. Murphy, A. B., P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, and J. A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 2006. 31(14): p. 1999-2017.
    57. Bolton, J. R., S. J. Strickler, and J. S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature, 1985. 316(6028): p. 495-500.
    58. Weber, M. F. and M. J. Dignam, Efficiency of Splitting Water with Semiconducting Photoelectrodes. Journal of The Electrochemical Society, 1984. 131(6): p. 1258-1265.
    59. Mor, G. K., H. E. Prakasam, O. K. Varghese, K. Shankar, and C. A. Grimes, Vertically Oriented Ti−Fe−O Nanotube Array Films:  Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis. Nano Letters, 2007. 7(8): p. 2356-2364.
    60. Sivula, K., F. L. Formal, and M. Gratzel, WO3−Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach. Chemistry of Materials, 2009. 21(13): p. 2862-2867.
    61. Cesar, I., A. Kay, J. A. Gonzalez Martinez, and M. Gratzel, Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:  Nanostructure-Directing Effect of Si-Doping. Journal of the American Chemical Society, 2006. 128(14): p. 4582-4583.
    62. Santato, C., M. Ulmann, and J. Augustynski, Enhanced Visible Light Conversion Efficiency Using Nanocrystalline WO3 Films. Advanced Materials, 2001. 13(7): p. 511-514.
    63. Liu, G., H. G. Yang, J. Pan, Y. Q. Yang, G. Q. Lu, and H.-M. Cheng, Titanium Dioxide Crystals with Tailored Facets. Chemical Reviews, 2014. 114(19): p. 9559-9612.
    64. Maeda, K., Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011. 12(4): p. 237-268.
    65. Liu, C., N. P. Dasgupta, and P. Yang, Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials, 2013. 26(1): p. 415-422.
    66. Pierre, A. C. and G. M. Pajonk, Chemistry of Aerogels and Their Applications. Chemical Reviews, 2002. 102(11): p. 4243-4266.
    67. Andersson, M., L. Osterlund, S. Ljungstrom, and A. Palmqvist, Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. The Journal of Physical Chemistry B, 2002. 106(41): p. 10674-10679.
    68. Wang, X., J. Zhuang, Q. Peng, and Y. Li, A general strategy for nanocrystal synthesis. Nature, 2005. 437(7055): p. 121-124.
    69. Wu, J.-M., T.-W. Zhang, Y.-W. Zeng, S. Hayakawa, K. Tsuru, and A. Osaka, Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity. Langmuir, 2005. 21(15): p. 6995-7002.
    70. Pradhan, S. K., P. J. Reucroft, F. Yang, and A. Dozier, Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth, 2003. 256(1–2): p. 83-88.
    71. Wu, J.-M., H. C. Shih, and W.-T. Wu, Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chemical Physics Letters, 2005. 413(4–6): p. 490-494.
    72. Roy, P., D. Kim, K. Lee, E. Spiecker, and P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010. 2(1): p. 45-59.
    73. Wang, G., H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters, 2011. 11(7): p. 3026-3033.
    74. Ramamoorthy, M., D. Vanderbilt, and R. D. King-Smith, First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Physical Review B, 1994. 49(23): p. 16721-16727.
    75. Barnard, A. S. and L. A. Curtiss, Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano Letters, 2005. 5(7): p. 1261-1266.
    76. Yang, H. G., C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008. 453(7195): p. 638-641.
    77. Hosono, E., S. Fujihara, K. Kakiuchi, and H. Imai, Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions. J. Am. Chem. Soc., 2004. 126: p. 7790.
    78. Wu, M., G. Lin, D. Chen, G. Wang, D. He, S. Feng, and R. Xu, Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide. Chemistry of Materials, 2002. 14(5): p. 1974-1980.
    79. Perera, S., N. Zelenski, and E. G. Gillan, Synthesis of Nanocrystalline TiO2 and Reduced Titanium Oxides via Rapid and Exothermic Metathesis Reactions. Chemistry of Materials, 2006. 18(9): p. 2381-2388.
    80. Yanagisawa, K., Y. Yamamoto, Q. Feng, and N. Yamasaki, Formation mechanism of fine anatase crystals from amorphous titania under hydrothermal conditions. Journal of Materials Research, 1998. 13(04): p. 825-829.
    81. Yanagisawa, K. and J. Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique:  Effects of Starting Material and Temperature. The Journal of Physical Chemistry B, 1999. 103(37): p. 7781-7787.
    82. Zhang, J., M. Li, Z. Feng, J. Chen, and C. Li, UV Raman Spectroscopic Study on TiO2. I. Phase Transformation at the Surface and in the Bulk. The Journal of Physical Chemistry B, 2005. 110(2): p. 927-935.
    83. Zhang, J., Q. Xu, M. Li, Z. Feng, and C. Li, UV Raman Spectroscopic Study on TiO2. II. Effect of Nanoparticle Size on the Outer/Inner Phase Transformations. The Journal of Physical Chemistry C, 2009. 113(5): p. 1698-1704.
    84. Liang, Y., C. S. Enache, and R. van de Krol, Photoelectrochemical Characterization of Sprayed - Thin Films: Influence of Si Doping and Interfacial Layer. International Journal of Photoenergy, 2008. 2008: p. 7.
    85. Chen, Z., T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. Journal of Materials Research, 2010. 25(01): p. 3-16.
    86. Oliver, P. M., G. W. Watson, E. Toby Kelsey, and S. C. Parker, Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. Journal of Materials Chemistry, 1997. 7(3): p. 563-568.
    87. Murray, P. W., F. M. Leibsle, H. J. Fisher, C. F. J. Flipse, C. A. Muryn, and G. Thornton, Observation of ordered oxygen vacancies on TiO (100)1×3 using scanning tunneling microscopy and spectroscopy. Physical Review B, 1992. 46(19): p. 12877-12879.
    88. Maeda, K., Effects of the Physicochemical Properties of Rutile Titania Powder on Photocatalytic Water Oxidation. ACS Catalysis, 2014. 4(6): p. 1632-1636.
    89. Di Valentin, C., A. Tilocca, A. Selloni, T. J. Beck, A. Klust, M. Batzill, Y. Losovyj, and U. Diebold, Adsorption of Water on Reconstructed Rutile TiO2(011)-(2×1):  TiO Double Bonds and Surface Reactivity. Journal of the American Chemical Society, 2005. 127(27): p. 9895-9903.
    90. Wilson, J. N. and H. Idriss, Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid. Journal of Catalysis, 2003. 214(1): p. 46-52.
    91. Chaves, A., R. S. Katiyar, and S. P. S. Porto, Coupled modes with symmetry in tetragonal BaTi. Physical Review B, 1974. 10(8): p. 3522-3533.
    92. Ohsaka, T., F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy, 1978. 7(6): p. 321-324.
    93. Feng, X., K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications. Nano Letters, 2008. 8(11): p. 3781-3786.

    QR CODE