簡易檢索 / 詳目顯示

研究生: 周子健
Daniel Thomas Chou
論文名稱: 以離散元素法及田口直交表分析預切溝槽 誘發水下淤泥連續坍滑之成效
Evaluate the Effect of Pre-cut Trenches on Underwater Marine Sediment Sliding using Discrete Element Method and Taguchi Orthogonal Array
指導教授: 廖洪鈞
Hung-Jiun Liao
口試委員: 林祺皓
Chi-Hao Lin
陳堯中
Yao-Chung Chen
廖洪鈞
Hung-Jiun Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 185
中文關鍵詞: 邊坡滑動溝槽淤泥清除離散元素耦合分析田口直交表
外文關鍵詞: landslide, cut cavity, desilting, discrete element method, coupling analysis, Taguchi orthogonal array
相關次數: 點閱:258下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣各地之水庫之淤泥淤積問題日益嚴重,大幅影響用水品質以
    及蓄水效率。此現象乃因造山運動以及侵蝕沉積作用同時發生,水庫
    的存在造成原本受沖刷且應沉積於下游之土沙淤泥淤積於水庫之中。
    近年來台灣已投入相當大量之經費及人力探討水庫淤泥清除方法,但
    肇因於水庫淤泥清除作業之可控制因子較少之緣故,現有方法之效果
    十分有限。
    本研究承接以水力鑽孔誘引水中淤泥邊坡連續滑動之可行性研
    究,其主要內容為建立水下邊坡之數值模型,並以離散元素法(DEM)
    和計算流體力學(CFD)進行耦合分析,模擬以水刀切削出之孔洞或溝
    槽,對引發水下邊坡連續坍滑,並由排砂隧道排出之適當方法。研究
    重點包含探討溝槽之位置、尺寸等參數,與淤泥經由排淤隧道排出庫
    區之效率關係。並利用離散元素法之特性結合品質工程領域之田口直
    交表,求解出不同之水流速度下,最佳淤泥清除率之溝槽之位置和尺
    寸。並以本研究之結果印證以高壓水刀於淤泥坡腳預先切削溝槽確實
    能加速與提升淤泥排除之效率。


    The issues of reservoir desilting in Taiwan have become a crucial
    problem for the national security, it causes the quality deterioration of
    running water and the reduction of reservoir storage. Although many
    efforts have been tried to develop methods and to improve the efficiency
    of reservoir desilting in the recent years, the problem of desilting is still
    remained.
    The purpose of this study is to propose a continuous landslide
    mechanism to increase the efficiency of reservoir desilting through
    discharging tunnel, it uses a series of pre-cut cavities in the reservoir
    sediment to trigger the continuous landslide mechanism. The cavities are
    created using high pressure water jetting method which is commonly used
    in the jet grouting practice. This study is conducted by using Discrete
    Element Method (DEM) coupled with Computational Fluid Dynamics
    (CFD). It focuses on describing the relationship between layout and
    dimension of jet cutting cavity and the efficiency of reservoir desilting.
    The Taguchi Orthogonal Array is adopted here to solve the
    muti-parameters problem of this study. The results of this study show that
    the efficiency of desilting by jet cutting trenches in the sediment slope
    can be quantified and the optimal layout and dimension of cavities to
    maximige the desilting efficiency is proposed.

    目錄 摘要 ..................................................................................................... I Abstract .............................................................................................. II 致謝 ................................................................................................... III 目錄 .................................................................................................. IV 圖目錄 ............................................................................................. VII 表目錄 ........................................................................................... XVI 第一章 緒論 ...................................................................................... 1 1.1 前言 ..................................................................................... 1 1.2 研究動機與目的 ................................................................. 2 1.3 研究內容 ............................................................................. 3 第二章 文獻回顧 .............................................................................. 4 2.1 國內水庫概述 ..................................................................... 4 2.1.1 台灣水庫淤積狀況 .................................................. 8 2.1.2 水庫淤積特性 ........................................................ 14 2.1.3 國內外水庫排砂清淤技術 .................................... 16 2.2 防淤工程之案例—曾文水庫排淤隧道 ........................... 27 2.2.1 莫拉克颱風對曾文水庫之影響 ............................ 27 2.2.2 防淤隧道工程簡介 ................................................ 29 V 2.2.3 防淤工程預估效益 ................................................ 31 2.3 接觸力學理論回顧 ........................................................... 32 2.4 品質工程與實驗設計之流程 ........................................... 35 2.4.1 實驗設計流程 ........................................................ 35 2.4.2 傳統實驗策略 (Typical Test Strategies) ............... 38 2.4.3 改良之實驗策略 .................................................... 40 2.4.4 直交表 .................................................................... 42 2.4.5 資料分析 ................................................................ 48 2.5 高壓灌漿柱體截面積之研究 ........................................... 49 2.5.1 高壓灌漿改良之分類與柱體截面積 .................... 49 2.5.2 多重扇形截面積與本研究之連結 ........................ 53 第三章 數值分析法 ........................................................................ 55 3.1 數值分析軟體簡介 ........................................................... 56 3.1.1 SolidWorks 簡介...................................................... 56 3.1.2 EDEM 之基本理論架構 ......................................... 57 3.1.3 ANSYS-Fluent 之基本理論架構 ............................ 70 3.1.4 Pix4Dmapper 簡介 .................................................. 78 3.2 研究目的與流程 ............................................................... 85 3.3 參數設定 ........................................................................... 87 VI 3.3.1 室內試驗 ................................................................ 90 3.3.2 數值分析試驗 ...................................................... 105 3.4 水下邊坡模型建立與分析 ............................................. 121 3.4.1 模型假設 .............................................................. 121 3.4.2 淤泥顆粒之堆疊與流體耦合分析 ...................... 124 3.4.3 溝槽切削直交表分析 .......................................... 136 第四章 數值分析結果之探討 ...................................................... 153 4.1 切削溝槽之配置對排除率影響 ..................................... 153 4.2 有切削溝槽與無溝槽之水下邊坡於耦合分析中之影像 擷取比較......................................................................................... 155 4.3 切削溝槽對不同時間下之排除率影響 ......................... 159 4.4 切削溝槽對不同流速下之排除率影響 ......................... 169 第五章 結論與建議 ...................................................................... 179 5.1 結論 ................................................................................. 179 5.2 建議 ................................................................................. 181 參考文獻......................................................................................... 182

    [1] Bishop, A.W. and Hight, D.W. (1977). “The value of Poisson’s ratio
    in saturated soils and rocks stressed under undrained conditions”.
    Geotechnique, Volume 27, Issue 3.
    [2] Hamilton, E. L. (1971). “Elastic properties of marine sediments”.
    Journal of Geophysical Research, Vol 76, No2.
    [3] Bravo, R., Perez-Aparicio, J.L.,Gomez-Hernandez J.J. (2015). “Numerical sedimentation particle-size analysis using the Discrete Element Method”.
    Advances in Water Resources. ELSEVIER.
    [4] Brabben, T. E. (1988). Reservoir Desilting Method. Technical Note,
    OD/TN 32.
    [5] Luo, T.T., Song, Y.C., Zhu, Y.M., Liu, W.G., Liu, Y., Li, Y.H., Wu,
    Z.O. (2016). “Triaxial experiments on the mechanical properties of
    hydrate-bearing marine sediments of south China sea”. Marine and
    Petroleum Geology. ELSEVIER.
    [6] Markatos, N. C. (1985). “The mathematical modelling of turbulent
    flows”. Applied Mathematical Modelling, Volume 10, Issue 3, pp.
    190 - 220.
    [7] Emamgholizadeh, S. and Samadi, H. (2008). “Desilting of deposited
    sediment at the upstream of the Dez Reservoir in Iran”, Journal of Applied Science in Environmental Sanitation, Volume 3. ResearchGate.

    183

    [8] Chang, C.S. (1992). ”Discrete Element Method for Slope Stability
    Analysis”. Journal of Geotechnical Engineering, Vol. 118, No. 12.
    ELSEVIER.
    [9] Lorenz, B. (2012). Contact Mechanics and Friction of Elastic Solids
    on
    Hard and Rough Substrates. Band / Volume 37, pp. 5-13.
    [10] ANSYS (2013). ANSYS Fluent Theory Guide. ANSYS Group. [11] Torng, C.C., Chou, C.Y., Liu, H.R. (1999). “Applying Quality Engineering Technique to Improve Wastewater Treatment”. Journal of Industrial Technology, Volume 15, Number 1
    [12] Versteeg, H. K., Malalasekera, W. (2007). Introduction to
    Computational Fluid Dynamics, The Finite Volume Method. Prentice
    Hall.
    [13] Chen, W.F. and Saleeb, A.F. (2005). Elasticity and Plasticity. China
    Architecture & Building Press.
    [14] Chen, W.F. and Saleeb, A.F. (2005). Constitutive Equations for
    Concrete and Soil. China Architecture & Building Press.
    [15] Lee, H.H. (2014). Finite Element Simulations with Ansys WorkBench
    15. 全華圖書。
    [16] Peyret, R. and Taylor, T.D. (1983). Computational Method for Fluid
    Flow. Springer-Verlag, New York, Heidelberg, Berlin.

    184

    [17] Elger, D.F.,LeBret, B.A., Crowe, C.T., Robertson, J.A. (2014).
    Engineering Fluid Mechanics. WILEY.
    [18] Mase, G.T., Smelser, R.E., Mase, G.E. (2010). Continuum Mechanics
    For Engineers. CRC Press.
    [19] Khan A. S. and Huang, S. (1995). Continuum Theory of Plasticity.
    WILEY.
    [20] Chung, T. J. (2007). General Continuum Mechanics. Cambridge
    Press.
    [21] Ross, P. J. (1995). Taguchi Techniques for Quality Engineering.
    McGraw-Hill Professional.
    [22] EDEM (2014). EDEM Theory Reference Guide. DEM Solutions.
    [23] 劉彥君(2014),「以水力鑽孔誘引水中淤泥邊坡連續滑動之可行
    性研究」,國立台灣科技大學營建工程系碩士論文。
    [24] 楊偉甫(2010),「氣候變遷下水庫排砂對策研究(1/2)」,經濟部
    水利署北區水資源局。
    [25] 楊偉甫(2011),「氣候變遷下水庫排砂對策研究(2/2)」,經濟部
    水利署北區水資源局。

    QR CODE