簡易檢索 / 詳目顯示

研究生: 林紀廷
Chi-Ting Lin
論文名稱: 矽線波導光耦合之設計與製程探討
Siliconwire based Optical Coupling Analysis in Design and Process
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
范慶麟
Ching-Lin Fan
莊敏宏
Miin-Horng Juang
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 矽光子矽線波導光柵耦合
外文關鍵詞: Siliconwire, Optical Coupling, Grating Coupler
相關次數: 點閱:215下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文之矽光子元件製作及模擬皆採用絕緣層上覆矽 (Silicon-on-insulator, SOI)基板。因其具備高折射率係數之特性,可大幅縮小元件體積,而且製程可與互補式金屬氧化物半導體 (Complementary Metal Oxide Semiconductor, CMOS)製程相互兼容,所以絕緣層上覆矽近年來被廣泛應用於高速低功耗電子元件,未來有利於高密度光電積體電路的發展。
    由於傳統光纖模場難以耦合進次微米矽光子元件,此論文將探討兩種不同的光纖耦合元件 - Nanotaper及光柵耦合器。經由商業軟體OmniSim之時域有限差分法 (Finite Difference Time Domain, FDTD)和FIMMWAVE之有限差分法 (Finite Difference Method, FDM)進行交叉數值模擬及模態驗證,可得到Nanotaper耦合器於尖端長寬分別為40 μm與0.12 μm時,其耦合效率可達89% (-0.5dB),而光柵耦合器單端耦合效率平均約為50% (-3dB)。同時我們更進一步分析Nanotaper模態狀況,將其衍伸應用於表面電漿生醫感測元件上。
    元件的製程皆於國家奈米元件實驗室 (National Nano Device Laboratories, NDL)進行,我們將探討分析I-line光學步進曝光機與Leica e-beam-電子束直寫系統製作元件之差異,製程實驗結果在I-line光學步進曝光機波導線寬製程限制約為0.35 μm,電子束直寫系統可穩定曝光0.1 μm寬之波導線寬。
    由I-line製作出之光柵耦合器,其單端最低耦合效率約為6% (-12dB),導致耦合效率降低的因素為側壁粗糙、覆蓋氧化層之品質亦以及耦合角度,相較於傳統絕熱式之邊緣3 μm波導線寬耦合器,耦合效率明顯提升許多。


    In this thesis, silicon-on-insulator (SOI) substrates are designed and simulated to make photonic devices. Because of the high refractive index contrast, the SOI based optical waveguides footprint can be significantly reduced besides widely used in high-speed and low-power electronic components in recent years. Moreover, the silicon photonic process is compatible with a complementary metal oxide semiconductor fabrication, which will benefit to the high-density optoelectronic integrated circuits (OEIC) development.
    Due to the coupling difficulty between the traditional fiber mode and sub-micron siliconwire based photonic components, there are two approaches explored in this thesis - Nanotaper and grating coupler. The nanotaper coupling efficiency, 89% (-0.5dB), can be demonstrated at 40-μm tip length and 0.12-μm width using the cross-value simulation and modal verification through the commercial softwares of OmniSim's Finite Difference Time Domain (FDTD) and FIMMWAVE's Finite Difference Method (FDM). The grating coupling efficiency is about 50% (-3dB) on average. Furthermore, the nanotaper mode will be utilized for the surface plasmon biosensing.
    All the components are processed in the National Nano Device Laboratories (NDL). The differences between the I-line stepper and the Leica electron-beam lithography will be further discussed. The experimental results show that the electron beam writing system can resolve 0.1-μm waveguide width and 0.35-μm for the I-line stepper exposure.
    Finally, the grating coupler is successfully fabricated and the single-ended minimum coupling efficiency is about 6% (-12dB), which may come from the factors of the sidewall roughness, cladding layer quality, and coupling angle. Compared with the conventional 3-μm adiabatic taper coupler, the grating coupling efficiency is significantly improved .

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章:緒論 1 1.1 簡介 1 1.2 研究動機 2 1.3 論文架構 2 第二章:光波導理論與特性介紹 3 2.1 矽光波導 3 2.2 單、多模條件 5 2.3 雙折射效應 (Birefringence Effect) 7 2.4 光波導傳輸損耗 8 2.4.1 材料吸收損耗 (Absorption Loss) 8 2.4.2 洩漏損耗 (Leakage Loss) 9 2.4.3 彎曲損耗 (Bending Loss) 11 2.4.4 散射損耗 (Scattering Loss) 13 第三章:光柵耦合器設計及模擬 16 3.1 光柵耦合器操作及理論 16 3.1.1 概述 16 3.1.2 布拉格條件 17 3.1.3 耦合理論 18 3.1.4 彎曲光柵耦合器 21 3.2 光柵耦合器模擬 22 3.2.1 設計及模擬概述 22 3.2.2 時域有限差分法 (Finite-Difference Time-Domain) 23 3.2.3 正確性驗證 27 3.3 設計參數影響 27 3.3.1 光柵週期 28 3.3.2 蝕刻深度 29 3.3.3 填充因子 (Fill Factor) 30 3.3.4 光纖耦合角度 30 3.3.5 設計參數影響總結 31 第四章:Nanotaper耦合器設計及模擬 33 4.1 Nanotaper簡介 33 4.2 有效折射率轉換 34 4.3 模態不匹配分析 37 第五章:表面電漿生醫感測器 41 5.1 表面電漿 41 5.1.1 表面電漿理論 41 5.1.2 電磁波色散關係式 43 5.2 表面電漿激發條件 49 5.2.1 稜鏡耦合 50 5.2.2 光波導耦合 50 5.3 文獻回顧 51 5.4 表面電漿波導模擬 53 5.4.1 表面電漿干涉於波導設計模擬 53 5.4.2 快速傅立葉應用於電漿干涉 58 第六章:製程技術探討及量測分析 61 6.1 概述 61 6.2 機台簡介 61 6.2.1 微影設備 61 6.2.2 蝕刻設備 62 6.2.3 薄膜沉積設備 65 6.3 矽線波導元件製程 66 6.4 製程總結 71 6.5 量測及分析 72 第七章:結論與未來展望 75 7.1 結論 75 7.2 未來展望 76 參考文獻 77

    [1] Senior and M. Jamro, Optical fiber communications. Harlow: Prentice Hall/Financial Times, 2009.
    [2] R. Soref, J. Schmidtchen and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2", IEEE Journal of Quantum Electronics, vol. 27, no. 8, pp. 1971-1974, 1991.
    [3] S. P. Chan, C. E. Png, S. T. Lim, G. Reed and V. Passaro, "Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section", Journal of Lightwave Technology, vol. 23, no. 6, pp. 2103-2111, 2005.
    [4] T. Aalto, M. Harjanne, M. Kapulainen, P. Heimala and M. Leppihalme, "Development of silicon-on-insulator waveguide technology", Integrated Optics: Devices, Materials, and Technologies VIII, 2004.
    [5] K. W. Ang and G. Q. L. Patrick, "Si charge avalanche enhances APD sensitivity beyond 100 GHz," Laser Focus World, vol. 46, no. 8, p. 41, 2010.
    [6] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout and R. Baets, "Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography", IEEE Photonics Technology Letters, vol. 16, no. 5, pp. 1328-1330, 2004.
    [7] Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs", IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 6, pp. 1090-1101, 2002.
    [8] A. Sakai, G. Hara and T. Baba, "Propagation Characteristics of Ultrahigh-Δ Optical Waveguide on Silicon-on-Insulator Substrate", Japanese Journal of Applied Physics, vol. 40, no. 2, 4, pp. L383-L385, 2001.
    [9] Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends", Optics Express, vol. 12, no. 8, p. 1622, 2004.
    [10] V. Subramaniam, G. De Brabander, D. Naghski and J. Boyd, "Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides", Journal of Lightwave Technology, vol. 15, no. 6, pp. 990-997, 1997.
    [11] K. Lee, D. Lim, H. Luan, A. Agarwal, J. Foresi and L. Kimerling, "Erratum: “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model” [Appl. Phys. Lett. 77, 1617 (2000)]", Applied Physics Letters, vol. 77, no. 14, pp. 2258-2258, 2000.
    [12] D. Marcuse, "Mode Conversion Caused by Surface Imperfections of a Dielectric Slab Waveguide", Bell System Technical Journal, vol. 48, no. 10, pp. 3187-3215, 1969.
    [13] F. Payne and J. Lacey, "A theoretical analysis of scattering loss from planar optical waveguides", Optical and Quantum Electronics, vol. 26, no. 10, pp. 977-986, 1994.
    [14] F. Grillot, L. Vivien, S. Laval, D. Pascal and E. Cassan, "Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides", IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663, 2004.
    [15] M. Dakss, L. Kuhn, P. Heidrich and B. Scott, "ERRATA: GRATING COUPLER FOR EFFICIENT EXCITATION OF OPTICAL GUIDED WAVES IN THIN FILMS", Applied Physics Letters, vol. 17, no. 6, pp. 268-268, 1970.
    [16] R. Waldhäusl, B. Schnabel, P. Dannberg, E. Kley, A. Bräuer and W. Karthe, "Efficient Coupling into Polymer Waveguides by Gratings", Applied Optics, vol. 36, no. 36, p. 9383, 1997.
    [17] D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman and R. Baets, "Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides", Japanese Journal of Applied Physics, vol. 45, no. 8, pp. 6071-6077, 2006.
    [18] F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O'Faolain, D. Van Thourhout and R. Baets, "Compact Focusing Grating Couplers for Silicon-on-Insulator Integrated Circuits", IEEE Photonics Technology Letters, vol. 19, no. 23, pp. 1919-1921, 2007.
    [19] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
    [20] V. Almeida, R. Panepucci and M. Lipson, "Nanotaper for compact mode conversion", Optics Letters, vol. 28, no. 15, p. 1302, 2003.
    [21] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
    [22] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
    [23] E. Kretschmann and H. Raether, "Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light", Zeitschrift für Naturforschung A, vol. 23, no. 12, 1968.
    [24] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection", Zeitschrift für Physik A Hadrons and nuclei, vol. 216, no. 4, pp. 398-410, 1968.
    [25] A. Estroff and B. Smith, "Tuning Metamaterials for Applications at DUV Wavelengths", International Journal of Optics, vol. 2012, pp. 1-7, 2012.
    [26] R. Harris and J. Wilkinson, "Waveguide surface plasmon resonance sensors", Sensors and Actuators B: Chemical, vol. 29, no. 1-3, pp. 261-267, 1995.
    [27] J. Čtyroký, J. Homola, P. Lambeck, S. Musa, H. Hoekstra, R. Harris, J. Wilkinson, B. Usievich and N. Lyndin, "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance", Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 66-73, 1999.
    [28] J. Dostálek, J. Čtyroký, J. Homola, E. Brynda, M. Skalský, P. Nekvindová, J. Špirková, J. Škvor and J. Schröfel, "Surface plasmon resonance biosensor based on integrated optical waveguide", Sensors and Actuators B: Chemical, vol. 76, no. 1-3, pp. 8-12, 2001.
    [29] P. Debackere, S. Scheerlinck, P. Bienstman and R. Baets, "Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor", Optics Express, vol. 14, no. 16, p. 7063, 2006.
    [30] R. Levy and S. Ruschin, "SPR waveguide sensor based on transition of modes at abrupt discontinuity", Sensors and Actuators B: Chemical, vol. 124, no. 2, pp. 459-465, 2007.
    [31] R. Levy and S. Ruschin, "Design of a Single-Channel Modal Interferometer Waveguide Sensor", IEEE Sensors Journal, vol. 9, no. 2, pp. 146-1, 2009.
    [32] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura and D. Ohnishi, "Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide", Applied Physics Letters, vol. 100, no. 11, p. 111108, 2012.
    [33] R. Levy and S. Ruschin, "SPR waveguide sensor based on combined sensing of phase and amplitude changes", Integrated Optics: Devices, Materials, and Technologies XI, 2007.
    [34] P. Debackere, R. Baets and P. Bienstman, "Bulk sensing experiments using a surface-plasmon interferometer", Optics Letters, vol. 34, no. 18, p. 2858, 2009.
    [35] Y. Chu, W. Hsu, C. Lin and W. Wang, "Surface plasmon resonance sensors using silica-on-silicon optical waveguides", Microwave and Optical Technology Letters, vol. 48, no. 5, pp. 955-957, 2006.
    [36] X. Wu, J. Zhang, J. Chen, C. Zhao and Q. Gong, "Refractive index sensor based on surface-plasmon interference", Optics Letters, vol. 34, no. 3, p. 392, 2009.
    [37] Y. Gao, Q. Gan, Z. Xin, X. Cheng and F. Bartoli, "Plasmonic Mach–Zehnder Interferometer for Ultrasensitive On-Chip Biosensing", ACS Nano, vol. 5, no. 12, pp. 9836-9844, 2011.
    [38] M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", Journal of the Optical Society of America, vol. 72, no. 1, p. 156, 1982.
    [39] C. Mogab, "The Loading Effect in Plasma Etching", Journal of The Electrochemical Society, vol. 124, no. 8, p. 1262, 1977.
    [40] K. Lee, D. Lim, L. Kimerling, J. Shin and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction", Optics Letters, vol. 26, no. 23, p. 1888, 2001.
    [41] M. Lee and M. Wu, "Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-Insulator and Sidewall Roughness Reduction", Journal of Microelectromechanical Systems, vol. 15, no. 2, pp. 338-343, 2006.

    QR CODE