簡易檢索 / 詳目顯示

研究生: 李謹州
Chin-Chou Li
論文名稱: 應用類免疫演算法於移動式機器人之 路徑規劃
Path Planning for Mobile Robot Using Artificial Immune Algorithm
指導教授: 陳志明
Chih-Ming Chen
王延年
Yen-Nien Wang
口試委員: 許新添
Hsin-Teng Hsu
林俊成
Jung-Cheng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 75
中文關鍵詞: 移動式機器人類免疫演算法路徑規劃
外文關鍵詞: mobile robots, artificial immune algorithm, path planning
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來許多學者致力於研究各種人工智慧法則,以發展各式各樣的智慧型機器人。智慧型機器人應具備對環境有感測、適應、學習以及行動等能力,然而生物免疫系統就具有這樣的特性,因此極為適合用來發展智慧型機器人。本論文藉由免疫系統的特性,發展新的類免疫行為理論,使機器人在未知環境中經由自我學習與適應能力達成行為反應。爲了驗證所提理論的可行性,本文在實作方面,利用影像擷取技術取得環境狀態,並以Borland C++ Builder為使用者視窗介面撰寫影像處理與類免疫行為控制等程式,由實作結果證明改良的類免疫行為理論應用於移動式機器人,可以有效完成避障與追蹤的任務。


It is generally accepted that a smart robot must have some self-learning abilities so that it can adapt with the
changing of environments. In the last few decades, many efforts have been devoted in the research of artificial intelligent for the so-called smart robots, huge progress has been achieved since for some robots. One study has acquire many attentions recently is the emulation of biological immune systems, Their fast learning and adaptation abilities have been shown worked nicely in many self-learning robots.
In this thesis, with some modifications and a few original developed techniques, a biological immune system is applied to a robot which is moving in a previously unknown and constantly changing environment. To provide the environment information for the robot, a CCD camera is installed for the experiment setting. The system has been tested for various conditions, and the results are very encouraging.

目錄 摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖表索引 Ⅶ 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻探討 2 1.3.1 基因演算法相關文獻回顧 2 1.3.2 類免疫演算法相關文獻回顧 3 1.4 論文架構 3 第二章 基因演算法 5 2.1 前言 5 2.2 基因演算法基本理論 5 2.3 Tu之基因文獻的演化流程 5 2.4 基因演算法之討論 13 第三章 類免疫演算法 14 3.1 前言 14 3.2 生物免疫反應 14 3.2.1 抗原與抗體 15 3.2.2 T淋巴細胞與B淋巴細胞 16 3.3 免疫反應的特色 17 3.4 Ishiguro之機器人類免疫演算法行為控制 18 3.4.1 Ishiguro之機器人抗體感測器規劃 20 3.4.2 Ishiguro之類免疫演算法數學建模 21 第四章 增強學習之類免疫演算法控制設計 24 4.1 前言 24 4.2 機器人增強學習之類免疫演算法控制系統架構 25 4.2.1 增強學習之機器人感測與控制架構設計 25 4.2.2 增強學習之機器人期望方位選擇之設計 26 4.2.3 增強學習之機器人調適機制之設計 29 4.2.4 機器人增強學習之類免疫演算法控制系統流程 35 4.3 增強學習之類免疫演算法的實作模擬 38 4.3.1 驗證機器人在靜態環境的行為反應 38 4.3.2 驗證機器人在動態環境的行為反應 42 4.4 模擬結果之討論 54 第五章 機器人硬體實作 55 5.1 前言 55 5.2 機器人硬體裝置與整個系統處理流程 55 5.2.1 機器人系統的硬體裝置 55 5.2.2 機器人系統處理流程 57 5.3 影像處理系統 58 5.3.1 色彩模型 58 5.3.2 影像掃描 59 5.4 機器人伺服馬達控制 61 5.5 機器人實作結果 61 5.5.1 機器人實作環境的定義 61 5.5.2 機器人單機硬體實作結果 62 5.5.3 硬體實作結果之討論 69 第六章 結果討論與未來研究方向 70 6.1 研究成果 70 6.2 未來研究方向 70 參考文獻 72 圖表索引 圖2.1 基因演算法運作流程 6 圖2.2 基因演算法族群示意圖 7 圖2.3 機器人的工作環境示意圖 8 圖2.4 染色體編碼設計 8 圖2.5 單點交配過程示意圖 11 圖2.6 兩點交配過程示意圖 11 圖2.7 字罩交配過程示意圖 12 圖2.8 字罩突變過程示意圖 12 圖3.1 生物免疫反應示意圖 15 圖3.2 抗體之Y型分子結構 16 圖3.3 免疫系統之抗體與抗原部位結合示意圖 16 圖3.4 B細胞群株落選擇示意圖 17 圖3.5 Jerne的個體型免疫網路假說架構 19 圖3.6 Ishiguro的類免疫演算法應用於機器人避障的示意圖 20 圖3.7 Ishiguro機器人抗體感測器規劃架構圖 21 圖4.1 增強學習之機器人系統架構圖 24 圖4.2 增強學習之機器人抗體感測器規劃架構圖 25 圖4.3 增強學習之機器人在靜態環境中的行為表現 26 圖4.4 增強學習之機器人偵測目標區 27 圖4.5 增強學習之機器人偵測行為禁止區 28 圖4.6 增強學習之機器人行為決策區 29 圖4.7 增強學習之機器人在五種狀態下的 值 31 圖4.8 增強學習之機器人在五種狀態下的學習率 34 圖4.9 增強學習之類免疫演算法控制系統流程圖 37 圖4.10 範例1:機器人路徑圖 39 圖4.11 範例2:機器人路徑圖 40 圖4.12 範例3:初始環境圖 41 圖4.13 範例4:機器人路徑圖 42 圖4.14 範例5:機器人路徑圖 46 圖4.15 範例6:機器人路徑圖 49 圖4.16 範例7:機器人路徑圖 52 圖5.1 SumoBot機器人車體 55 圖5.2 無線通訊藍芽模組 56 圖5.3 快看高手版4000視訊攝影機 56 圖5.4 機器人的實作平台示意圖 57 圖5.5 機器人整個系統處理流程 58 圖5.6 跳躍式影像搜尋法 60 圖5.7 擴散搜尋法 60 圖5.8 馬達測試介面 61 圖5.9 機器人實際硬體實作平台 62 圖5.10 機器人實作1結果圖 63 圖5.11 機器人實作2結果圖 64 圖5.12 機器人實作3結果圖 65 圖5.13 機器人實作4結果圖 67 圖5.14 機器人實作5結果圖 68 表4.1 範例1:機器人路徑圖學習結果比較 39 表4.2 範例2:機器人路徑圖學習結果比較 40 表4.3 範例3:機器人路徑圖學習結果比較 41 表4.4 範例4:機器人路徑圖學習結果比較 45 表4.5 範例5:機器人路徑圖學習結果比較 48 表4.6 範例6:機器人路徑圖學習結果比較 51 表4.7 範例7:機器人路徑圖學習結果比較 54

[1] Tu Jianping, and S.X. Yang, “Genetic algorithm based path planning for a mobile robot,” Proceedings of the 2003 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1221-1226, Sep. 2003.

[2] Ishiguro, A., R. Watanabe, and Y. Uchikawa, “An immunological approach to dynamic behavior control for autonomous mobile robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 495-500, Aug. 1995.

[3] Holland, J. H., Adaptation in Natural and Artificial System, Ann Arbor, MI: The University of Michigan Press, 1975.

[4] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA: Addison-Wesley, 1989.

[5] Geisler, T., and T.W. Manikas, “Autonomous robot navigation system using a novel value encoded genetic algorithm,” Proceedings of the 2002 45th Midwest Symposium on Circuits and Systems, vol. 3, pp. 4-7, Aug. 2002.

[6] Wang, Chumniao, Y.C. Soh, Han Wang, and Hui Wang, “A hierarchical genetic algorithm for path planning in a static environment with obstacles,” Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 500-505, May 2002.

[7] Hu, Yanrong, and S.X. Yang, “A knowledge based genetic algorithm for path planning of a mobile robot,” Proceedings of the 2004 IEEE International Conference on Robotics and Automation, vol. 5, pp. 4350- 4355, April-1 May 2004.

[8] Liu, Shuhua, Yantao Tian, and Jinfang Liu, “Multi mobile robot path planning based on genetic algorithm,” Proceedings of the Fifth World Congress on Intelligent Control and Automation, vol. 5, pp. 4706-4709, June 2004.

[9] Ramakrishnan, R., and S. Zein-Sabatto, “Multiple path planning for a group of mobile robot in a 2-D environment using genetic algorithms,” Proceedings of the IEEE SoutheastCon, pp. 65-71, March 2001.

[10] Kobayashi, F., N. Tomita, and F. Kojima, “Re-formation of mobile robots using genetic algorithm and reinforcement learning,” Proceedings of the SICE 2003 Annual Conference, vol. 3, pp. 2902-2907, Aug. 2003.

[11] Tanaka, K., and K. Yoshioka, “Fuzzy trajectory control and GA-based obstacle avoidance of a truck with five trailers,” IEEE International Conference on Systems, Man and Cybernetics, vol. 5, pp. 4378-4382, Oct. 1995.

[12] Kubota, N., T. Morioka, and F. Kojima, T. Fukuda, “Learning of mobile robots using perception-based genetic algorithm,” Measurement: Journal of the International Measurement Confederation, vol. 29, pp. 237-248, Apr. 2001.

[13] Han Woong-Gie, Seung-Min Baek, and Tae-Yong Kuc, “Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2747-2751, Oct. 1997.

[14] Zhang Ying, Cheng-Dong Wu, and Meng-Xin Li, “Rough set and genetic algorithm in path planning of robot,” Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 2, pp. 698-701, Nov. 2003.

[15] Yasuda, G., and H. Takai, “Sensor-based path planning and intelligent steering control of nonholonomic mobile robots,” Proceedings of the 27th Annual Conference on Industrial Electronics Societ, vol. 1, pp. 317-322, Nov./Dec. 2001.

[16] Lin Hoi-Shan, J. Xiao, and Z. Michalewicz, “Evolutionary navigator for a mobile robot,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2199-2204, May 1994.

[17] Ishiguro, A., T. Kondo, Y. Watanabe, and Y. Uchikawa, “Dynamic behavior arbitration of autonomous mobile robots using immune networks,” Proceedings of the IEEE International Conference on Evolutionary Computation, vol. 2, pp. 722-727, Dec. 1995.

[18] Ishiguro, A., Y. Shirai, T. Kondo, and Y. Uchikawa, “Immunoid: an architecture for behavior arbitration based on the immune networks,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1730-1738, Nov. 1996.

[19] Ishiguro, A., Y. Watanabe, T. Kondo, and Y. Uchikawa, “Decentralized consensus-making mechanisms based on immune system-application to a behavior arbitration of an autonomous mobile robot,” Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 82-87, May 1996.

[20] Ishiguro, A., Y. Watanabe, T. Kondo, Y. Shirai, and Y. Uchikawa, “A robot with a decentralized consensus-making mechanism based on the immune system,” Proceedings of the Third International Symposium on Autonomous Decentralized Systems, pp. 231-237, Apr. 1997.

[21] Ishiguro, A., T. Kondo, Y. Watanabe, Y. Shirai, and Y. Uchikawa, “Emergent construction of artificial immune networks for autonomous mobile robots,” Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 1222-1228, Oct. 1997.

[22] Mochida, T., A. Ishiguro, T. Aoki, and Y. Uchikawa, “Behavior arbitration for autonomous mobile robots using emotion mechanisms,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 516-521, Aug. 1995.

[23] Gong Tao, and Zixing Cai, “Mobile immune-robot model,” Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, vol. 2, pp. 1091-1096, Oct. 2003.

[24] Vargas, P.A., L.N. de Castro, R. Michelan, and F.J. Von Zuben, “Implementation of an immuno-genetic network on a real Khepera II robot,” Proceedings of the Congress on Evolutionary Computation vol. 1, pp. 420-426, Dec. 2003.

[25] Luh Guan-Chun, and Wei-Chong Cheng, “Behavior-Based Intelligent Mobile Robot Using Immunized Reinforcement Adaptive Learning Mechanism,” Advanced Engineering Informatics, vol. 16, pp. 85-98, Apr. 2002.

[26] Sun Sang-Joon, Dong-Wook Lee, and Kwee-Bo Sim, “Artificial immune-based swarm behaviors of distributed autonomous robotic systems,” Robotics and Automation, 2001. Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3993-3998, 2001.

[27] Lee Dong-Wook, and Kwee-Bo Sim, “Artificial immune network-based cooperative control in collective autonomous mobile robots,” Proceedings of the 6th IEEE International Workshop on Robot and Human Communication, pp. 58-63, Sep./Oct. 1997.

[28] Borenstein, J., and Y. Koren, “Real-time obstacle avoidance for fact mobile robots,” IEEE Transactions on Systems, Man and Cybernetics, vol. 19, pp. 1179-1187, Sep./Oct. 1989.

[29] Minguez, J., “The obstacle-restriction method for robot obstacle avoidance in difficult environments,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2284-2290, Aug. 2005.

[30] 莊金谷, “應用類免疫網路於行為式自主性移動式機器人巡航,” 大同大學機械工程學系碩士論文, June 2002.

[31] 游智鈞, “設計足球機器人類免疫網路為基礎之避障與物件追蹤控制器,” 淡江大學機械工程學系碩士論文, July 2003.

[32] 陳佳興, “應用類免疫網路於足球機器人動做選擇機制之設計,” 淡江機械工程學系碩士論文, July 2004.

[33] 徐浩軒, “以類免疫演算法為基礎之移動式機器人避障路徑規劃,” 龍華科技大學電子工程學系碩士論文, July 2005.

無法下載圖示 全文公開日期 2011/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE