簡易檢索 / 詳目顯示

研究生: 何宗曄
Tsung-Yeh Ho
論文名稱: 以硫化銅鋅錫敏化之二氧化鈦奈米柱進行光電水分解之研究
The study of Cu2ZnSnS4 sensitized TiO2 nanorods photoanode on photoelectrochemical water splitting
指導教授: 陳良益
Liang-Yih Chen
口試委員: 劉豫川
陳浩銘
陳詩芸
江志強
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 158
中文關鍵詞: 硫化銅鋅錫二氧化鈦水分解產氫表面修飾
外文關鍵詞: hydroge
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討以硫化銅鋅錫(Cu2ZnSnS4)作為二氧化鈦奈米柱之敏化材料於光電水分解產氫之應用。硫化銅鋅錫(Cu2ZnSnS4)為p型直接能隙半導體,由於其具有低成本、無毒性、材料來源充足及合適的能隙值(~1.5 eV)之優點,因此非常適合作為光伏元件或光電水分解之吸收材料。於本研究中吾人首先利用水熱法合成長一維二氧化鈦奈米柱於透明導電基板上,並藉由不同的黏著層(硫化銅、硫化二銅、硫化鎘)的輔助,將硫化銅鋅錫奈米粒子以化學浴沈積法(CBD)均勻的沉積於二氧化鈦奈米柱上。最後吾人利用硫化鋅(ZnS)做為表面修飾來提升元件的效率。於不同的黏著層中,以硫化二銅(Cu2S)做為黏著層的元件擁有最佳的效率。其光電流密度可以達到5.81 mA/cm2。藉由電化學阻抗頻譜(EIS)分析中吾人得知,硫化二銅黏著層可以輔助硫化銅鋅錫中的電子與電洞分離,而硫化鋅表面修飾可以輔助硫化銅鋅錫中的電洞傳遞至電解液中。此外吾人利用硫化鋅以及二氧化矽雙層修飾來更進一步提昇元件的效率以及穩定度。在經過硫化鋅以及二氧化矽雙層修飾後,二氧化鈦/硫化銅鋅錫電極的表面活性及界面化學電容值(chemical capacitance)皆有所下降。因此吾人推測二氧化矽可以修飾電極表面之表面態(surface state)並減低電極表面的載子再結合發生。經過硫化鋅以及二氧化矽雙層修飾後的電極,其光電流密度可以提升到7.95 mA/cm2。而經過4小時的穩定性量測後,其光電流密度仍然能夠保持其起始值的82 %。


Cu2ZnSnS4 (CZTS), which owning suitable bandgap and band position, high absorption coefficient, is a suitable sensitizer for photovoltaic or photoelectrochemical (PEC) application. In this study, CZTS nanoparticles were decorated on TiO2 NRAs with adhesion layer by using solvothermal method. Different kinds of adhesion layers, such as CdS, CuS, Cu2S, were employed to enhance the uniformity of CZTS. Finally, ZnS layer was used as passivation layer for increasing conversion efficient. By using Cu2S adhesion layer and ZnS passivation layer, the photocurrent density of TiO2/Cu2S(6)/CZTS/ZnS(5) electrode can reach 5.81 mA/cm2 @1.23 V vs RHE. According to electrochemical impedance spectroscopy (EIS) analysis, the Cu2S adhesion layer assisted the charge separation in CZTS due to the cascade band structure, and the ZnS passivation layer helped the photogenerated hole transfer from CZTS to the electrolyte. Besides, the stability of the CZTS in the electrolyte solution is one of the major problems for long time usage. To further improve the stability as well as the PEC performance of CZTS sensitized TiO2 electrode, the ZnS and SiO2 dual passivation layers are employed to passivate the surface of the CZTS. The tafel measurement and electrochemical impedance spectroscopy are used to understand the mechanism of the SiO2 over layer. After the SiO2 decoration, the activity of the device decrease a little and the surface state chemical capacity also decrease. Therefore, the SiO2 Over layer seems to be a surface passivation layer, which can passivate the surface defect and increase the efficient of the device. The photocurrent of the device with ZnS and SiO2 dual passivation layers can reach 7.92 mA/cm2 @1.23 V vs. RHE. The photocurrent density of the photoelectrode with dual passivation remained 82% of its initial value after 4 hours measurement.

口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xvi NOMENCLATURE xvii Chapter 1 Introduction 1 1-1 Climate change 1 1-2 Hydrogen energy 5 1-3 Photoelectrochemical hydrogen generation 10 1-4 Literature reviews 16 1-5 Focus of this thesis 23 1-6 Reference 24 Chapter 2 Theory and Experiment 31 2-1 Theory of photoelectrochemical (PEC) cell 31 2-1-1 Semiconductor physics 31 2-1-2 Semiconductor/electrolyte interface 33 2-1-3 Water splitting reaction 36 2-1-4 Solar to hydrogen conversion efficiency 37 2-2 Experimental schematic diagram 39 2-3 Chemical reagents and apparatus 40 2-3-1 Chemical reagents 40 2-3-2 Apparatus 45 2-3-3 Analysis instruments 46 2-4 References 60 Chapter 3 Growth of Oriented Single-Crystalline Rutile TiO2 Nanorod Arrays for PEC water splitting 62 3-1 Introduction 62 3-2 Experimental section 63 3-2-1 Preparation of TiO2 NR arrays 63 3-2-2 Characteristics 64 3-3 Results and discussion 65 3-3-1 Effect of initial reactant concentration 67 3-3-2 Effect of the amount of HCl solution 69 3-3-3 Effect of the growth time 70 3-4 Conclusions 72 3-5 References 73 Chapter 4 The Effect of Different Adhesion Layer on CZTS Sensitized TiO2 PEC Water Splitting 75 4-1 Introduction 75 4-2 Experimental section 77 4-2-1 Preparation of TiO2 NR arrays 77 4-2-2 Deposition of adhesion layer 77 4-2-3 Deposition of CZTS absorption layer and ZnS passivation layer 78 4-2-4 Characteristics 79 4-3 Results and discussion 80 4-3-1 CdS as adhesion layer 84 4-3-2 CuS and Cu2S as adhesion layer 94 4-4 Conclusions 105 4-5 References 106 Chapter 5 CZTS sensitized TiO2 Photoanode with ZnS and SiO2 Dual Passivation Layer for Water Splitting 111 5-1 Introduction 111 5-2 Experimental section 112 5-2-4 Deposition of SiO2 passivation layer 113 5-2-5 Characteristics 113 5-3 Results and discussion 114 5-4 Conclusions 124 5-5 References 125 APPENDIX A 127 APPENDIX B 128 APPENDIX C 134

1. Nigel W. Arnell and Ben Lloyd-Hughes, Climatic Change, 122, 127-140 (2014).
2. Tomoko Hasegawa, Shinichiro Fujimori, Kiyoshi Takahashi, Tokuta Yokohata, and Toshihiko Masui, Climatic Change, 136, 189-202 (2016).
3. S. Wikipedia and Books LLC, Typhoons in Taiwan: Typhoon Morakot, Typhoon Wipha, Tropical Storm Linfa, Typhoon Matsa, Typhoon Fung-Wong, Typhoon Parma, Typhoon Conson. (General Books, 2010).
4. Shou-Hao Chiang and Kang-Tsung Chang, Geomorphology, 133, 143-151 (2011).
5. Frauke Feser and Hans von Storch, Monthly Weather Review, 136, 1806-1815 (2008).
6. Johnny C. L. Chan and Kin Sik Liu, Journal of Climate, 17, 4590-4602 (2004).
7. IPCC, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T.F. Stocker, D. Qin, G.-K. Plattner et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013), pp. 1–30.
8. U. Cubasch, D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, and J.-G. Winther, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T.F. Stocker, D. Qin, G.-K. Plattner et al. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013), pp. 119–158.
9. Edward J. Dlugokencky, Euan G. Nisbet, Rebecca Fisher, and David Lowry, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2058-2072 (2011).
10. Stefanie Kirschke, Philippe Bousquet, Philippe Ciais, Marielle Saunois, Josep G. Canadell, Edward J. Dlugokencky, Peter Bergamaschi, Daniel Bergmann, Donald R. Blake, Lori Bruhwiler et al., Nature Geosci, 6, 813-823 (2013).
11. Keywan Riahi, Shilpa Rao, Volker Krey, Cheolhung Cho, Vadim Chirkov, Guenther Fischer, Georg Kindermann, Nebojsa Nakicenovic, and Peter Rafaj, Climatic Change, 109, 33 (2011).
12. Detlef P. van Vuuren, Elke Stehfest, Michel G. J. den Elzen, Tom Kram, Jasper van Vliet, Sebastiaan Deetman, Morna Isaac, Kees Klein Goldewijk, Andries Hof, Angelica Mendoza Beltran et al., Climatic Change, 109, 95 (2011).
13. Energy Information Administration and Government Publications Office, International Energy Outlook: 2016 with Projections to 2040. (U.S. Government Printing Office, 2016).
14. Sunita Sharma and Sib Krishna Ghoshal, Renewable and Sustainable Energy Reviews, 43, 1151-1158 (2015).
15. Mustafa Balat, International Journal of Hydrogen Energy, 33, 4013-4029 (2008).
16. Paul E. Dodds, Iain Staffell, Adam D. Hawkes, Francis Li, Philipp Grünewald, Will McDowall, and Paul Ekins, International Journal of Hydrogen Energy, 40, 2065-2083 (2015).
17. Jasem Alazemi and John Andrews, Renewable and Sustainable Energy Reviews, 48, 483-499 (2015).
18. Tasneem Abbasi and S. A. Abbasi, Renewable and Sustainable Energy Reviews, 15, 3034-3040 (2011).
19. G. Zini and P. Tartarini, Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy. (Springer Milan, 2012).
20. R.B. Gupta, Hydrogen Fuel: Production, Transport, and Storage. (CRC Press, 2008).
21. United States. Department of Energy. Office of Energy Efficiency, Renewable Energy, United States. Department of Energy. Office of Scientific, and Technical Information, Multiyear Research, Development and Demonstration Plan. (United States. Department of Energy. Office of Energy Efficiency and Renewable Energy, 2012).
22. United States. Department of Energy. Office of Energy Efficiency, Renewable Energy, United States. Department of Energy. Office of Scientific, and Technical Information, Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. (United States. Department of Energy. Office of Energy Efficiency and Renewable Energy, 2010).
23. V. Smil, Energy: A Beginner's Guide. (Oneworld Publications, 2006).
24. L. Vayssieres, On Solar Hydrogen and Nanotechnology. (Wiley, 2010).
25. NREL - ASTM G173-03 Reference Spectra. http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html (accessed: 8/17/2017)
26. Shiyou Chen, Aron Walsh, Ji-Hui Yang, Xin-Gao Gong, Lin Sun, Ping-Xiong Yang, Jun-Hao Chu, and Su-Huai Wei, Physical Review B, 83, 125201 (2011).
27. Yong Xu and Martin AA Schoonen, American Mineralogist, 85, 543-556 (2000).
28. Michael G. Walter, Emily L. Warren, James R. McKone, Shannon W. Boettcher, Qixi Mi, Elizabeth A. Santori, and Nathan S. Lewis, Chemical Reviews, 110, 6446-6473 (2010).
29. Wenqing Fan, Qinghong Zhang, and Ye Wang, Physical Chemistry Chemical Physics, 15, 2632-2649 (2013).
30. S. Giménez and J. Bisquert, Photoelectrochemical Solar Fuel Production: From Basic Principles to Advanced Devices. (Springer International Publishing, 2016).
31. Chunhui Miao, Shulin Ji, Guoping Xu, Guodong Liu, Lide Zhang, and Changhui Ye, ACS Applied Materials & Interfaces, 4, 4428-4433 (2012).
32. Mahmoud G. Ahmed, Imme E. Kretschmer, Tarek A. Kandiel, Amira Y. Ahmed, Farouk A. Rashwan, and Detlef W. Bahnemann, ACS Applied Materials & Interfaces, 7, 24053-24062 (2015).
33. H. Kisch, Semiconductor Photocatalysis: Principles and Applications. (Wiley, 2014).
34. Jingrun Ran, Jun Zhang, Jiaguo Yu, Mietek Jaroniec, and Shi Zhang Qiao, Chemical Society Reviews, 43, 7787-7812 (2014).
35. Jiahai Wang, Wei Cui, Qian Liu, Zhicai Xing, Abdullah M. Asiri, and Xuping Sun, Advanced Materials, 28, 215-230 (2016).
36. Charles C. L. McCrory, Suho Jung, Ivonne M. Ferrer, Shawn M. Chatman, Jonas C. Peters, and Thomas F. Jaramillo, Journal of the American Chemical Society, 137, 4347-4357 (2015).
37. Kevin Sivula, Florian Le Formal, and Michael Grätzel, ChemSusChem, 4, 432-449 (2011).
38. Michael J. Katz, Shannon C. Riha, Nak Cheon Jeong, Alex B. F. Martinson, Omar K. Farha, and Joseph T. Hupp, Coordination Chemistry Reviews, 256, 2521-2529 (2012).
39. Yichuan Ling, Gongming Wang, Damon A. Wheeler, Jin Z. Zhang, and Yat Li, Nano Letters, 11, 2119-2125 (2011).
40. Weiren Cheng, Jingfu He, Zhihu Sun, Yanhua Peng, Tao Yao, Qinghua Liu, Yong Jiang, Fengchun Hu, Zhi Xie, Bo He et al., The Journal of Physical Chemistry C, 116, 24060-24067 (2012).
41. Vitor A. N. de Carvalho, Roberto A. de S. Luz, Bruno H. Lima, Frank N. Crespilho, Edson R. Leite, and Flavio L. Souza, Journal of Power Sources, 205, 525-529 (2012).
42. Nathan T. Hahn and C. Buddie Mullins, Chemistry of Materials, 22, 6474-6482 (2010).
43. Hiroaki Muta, Ken Kurosaki, Masayoshi Uno, and Shinsuke Yamanaka, Journal of Alloys and Compounds, 335, 200-202 (2002).
44. Mingyang Li, Yi Yang, Yichuan Ling, Weitao Qiu, Fuxin Wang, Tianyu Liu, Yu Song, Xiaoxia Liu, Pingping Fang, Yexiang Tong et al., Nano Letters, 17, 2490-2495 (2017).
45. S. David Tilley, Maurin Cornuz, Kevin Sivula, and Michael Grätzel, Angewandte Chemie International Edition, 49, 6405-6408 (2010).
46. Benjamin Klahr, Sixto Gimenez, Francisco Fabregat-Santiago, Juan Bisquert, and Thomas W. Hamann, Journal of the American Chemical Society, 134, 16693-16700 (2012).
47. Mary W. Louie and Alexis T. Bell, Journal of the American Chemical Society, 135, 12329-12337 (2013).
48. Jae Young Kim, Ganesan Magesh, Duck Hyun Youn, Ji-Wook Jang, Jun Kubota, Kazunari Domen, and Jae Sung Lee, Scientific Reports, 3, 2681 (2013).
49. Aron Walsh, Yanfa Yan, Muhammad N. Huda, Mowafak M. Al-Jassim, and Su-Huai Wei, Chemistry of Materials, 21, 547-551 (2009).
50. Fatwa F. Abdi, Tom J. Savenije, Matthias M. May, Bernard Dam, and Roel van de Krol, The Journal of Physical Chemistry Letters, 4, 2752-2757 (2013).
51. Jiangtian Li and Nianqiang Wu, Catalysis Science & Technology, 5, 1360-1384 (2015).
52. Tae Woo Kim and Kyoung-Shin Choi, Science, 343, 990-994 (2014).
53. Kanak Pal Singh Parmar, Hyun Joon Kang, Amita Bist, Piyush Dua, Jum Suk Jang, and Jae Sung Lee, ChemSusChem, 5, 1926-1934 (2012).
54. Sean P. Berglund, Alexander J. E. Rettie, Son Hoang, and C. Buddie Mullins, Physical Chemistry Chemical Physics, 14, 7065-7075 (2012).
55. Diane K. Zhong, Sujung Choi, and Daniel R. Gamelin, Journal of the American Chemical Society, 133, 18370-18377 (2011).
56. Satyananda Kishore Pilli, Thomas E. Furtak, Logan D. Brown, Todd G. Deutsch, John A. Turner, and Andrew M. Herring, Energy & Environmental Science, 4, 5028-5034 (2011).
57. Jason A. Seabold and Kyoung-Shin Choi, Journal of the American Chemical Society, 134, 2186-2192 (2012).
58. Yuriy Pihosh, Ivan Turkevych, Kazuma Mawatari, Jin Uemura, Yutaka Kazoe, Sonya Kosar, Kikuo Makita, Takeyoshi Sugaya, Takuya Matsui, Daisuke Fujita et al., Scientific Reports, 5, 11141 (2015).
59. Zhuofeng Hu, Zhurui Shen, and Jimmy C. Yu, Green Chemistry, 19, 588-613 (2017).
60. Lu Gao, Yingchao Cui, Rene H. J. Vervuurt, Dick van Dam, Rene P. J. van Veldhoven, Jan P. Hofmann, Ageeth A. Bol, Jos E. M. Haverkort, Peter H. L. Notten, Erik P. A. M. Bakkers et al., Advanced Functional Materials, 26, 679-686 (2016).
61. Henning Döscher, Oliver Supplie, Matthias M. May, Philipp Sippel, Christian Heine, Andrés G. Muñoz, Rainer Eichberger, Hans-Joachim Lewerenz, and Thomas Hannappel, ChemPhysChem, 13, 2899-2909 (2012).
62. Min Hyung Lee, Kuniharu Takei, Junjun Zhang, Rehan Kapadia, Maxwell Zheng, Yu-Ze Chen, Junghyo Nah, Tyler S. Matthews, Yu-Lun Chueh, Joel W. Ager et al., Angewandte Chemie International Edition, 51, 10760-10764 (2012).
63. Yongjing Lin, Rehan Kapadia, Jinhui Yang, Maxwell Zheng, Kevin Chen, Mark Hettick, Xingtian Yin, Corsin Battaglia, Ian D. Sharp, Joel W. Ager et al., The Journal of Physical Chemistry C, 119, 2308-2313 (2015).
64. Qiang Li, Maojun Zheng, Miao Zhong, Liguo Ma, Faze Wang, Li Ma, and Wenzhong Shen, Scientific Reports, 6, 29738 (2016).
65. Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, and Radek Zboril, Chemical Society Reviews, 46, 3716-3769 (2017).
66. Xudong Wang, Zhaodong Li, Jian Shi, and Yanhao Yu, Chemical Reviews, 114, 9346-9384 (2014).
67. Don T. Cromer and K. Herrington, Journal of the American Chemical Society, 77, 4708-4709 (1955).
68. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, and F. Lévy, Journal of Applied Physics, 75, 633-635 (1994).
69. Masahide Takahashi, Kaori Tsukigi, Takashi Uchino, and Toshinobu Yoko, Thin Solid Films, 388, 231-236 (2001).
70. P. Salvador, Journal of Applied Physics, 55, 2977-2985 (1984).
71. Mourad Frites and Shahed U. M. Khan, Electrochemistry Communications, 11, 2257-2260 (2009).
72. Xinjian Feng, Karthik Shankar, Oomman K. Varghese, Maggie Paulose, Thomas J. Latempa, and Craig A. Grimes, Nano Letters, 8, 3781-3786 (2008).
73. S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard, and C. B. Mullins, Journal of the American Chemical Society, 134, 3659-3662 (2012).
74. Alice Mazzarolo, Kiyoung Lee, Antonello Vicenzo, and Patrik Schmuki, Electrochemistry Communications, 22, 162-165 (2012).
75. Kiyoung Lee, Anca Mazare, and Patrik Schmuki, Chemical Reviews, 114, 9385-9454 (2014).
76. Zhonghai Zhang, Md Faruk Hossain, and Takakazu Takahashi, International Journal of Hydrogen Energy, 35, 8528-8535 (2010).
77. Son Hoang, Sean P. Berglund, Raymond R. Fullon, Ryan L. Minter, and C. Buddie Mullins, Journal of Materials Chemistry A, 1, 4307-4315 (2013).
78. Haimin Zhang, Porun Liu, Feng Li, Hongwei Liu, Yun Wang, Shanqing Zhang, Mingxing Guo, Huiming Cheng, and Huijun Zhao, Chemistry – A European Journal, 17, 5949-5957 (2011).
79. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, Nano Letters, 11, 4978-4984 (2011).
80. Hongwei Bai, Zhaoyang Liu, Siew Siang Lee, and Darren Delai Sun, Applied Catalysis A: General, 447–448, 193-199 (2012).
81. Robert P. Lynch, Andrei Ghicov, and Patrik Schmuki, Journal of the Electrochemical Society, 157, G76-G84 (2010).
82. Jih-Sheng Yang, Wen-Pin Liao, and Jih-Jen Wu, ACS Applied Materials & Interfaces, 5, 7425-7431 (2013).
83. Yun Jeong Hwang, Chris Hahn, Bin Liu, and Peidong Yang, ACS Nano, 6, 5060-5069 (2012).
84. Ying-Chih Pu, Yichuan Ling, Kao-Der Chang, Chia-Ming Liu, Jin Z. Zhang, Yung-Jung Hsu, and Yat Li, The Journal of Physical Chemistry C, 118, 15086-15094 (2014).
85. Kanamori Masaaki, Suzuki Kiyohiro, Ohya Yutaka, and Takahashi Yasutaka, Japanese Journal of Applied Physics, 33, 6680 (1994).
86. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, and Y. Li, Nano Letters, 11, 3026-3033 (2011).
87. In Sun Cho, Manca Logar, Chi Hwan Lee, Lili Cai, Fritz B. Prinz, and Xiaolin Zheng, Nano Letters, 14, 24-31 (2013).
88. M. Xu, P. Da, H. Wu, D. Zhao, and G. Zheng, Nano Letters, 12, 1503-1508 (2012).
89. Chengzhi Wang, Zhuo Chen, Haibo Jin, Chuanbao Cao, Jingbo Li, and Zetian Mi, Journal of Materials Chemistry A, 2, 17820-17827 (2014).
90. Min Yang, Himendra Jha, Ning Liu, and Patrik Schmuki, Journal of Materials Chemistry, 21, 15205-15208 (2011).
91. Chittaranjan Das, Poulomi Roy, Min Yang, Himendra Jha, and Patrik Schmuki, Nanoscale, 3, 3094-3096 (2011).
92. Marco Altomare, Kiyoung Lee, Manuela S. Killian, Elena Selli, and Patrik Schmuki, Chemistry – A European Journal, 19, 5841-5844 (2013).
93. Chuanwei Cheng and Yan Sun, Applied Surface Science, 263, 273-276 (2012).
94. Wen Qi Fang, Xue Lu Wang, Haimin Zhang, Yi Jia, Ziyang Huo, Zhen Li, Huijun Zhao, Hua Gui Yang, and Xiangdong Yao, Journal of Materials Chemistry A, 2, 3513-3520 (2014).
95. Son Hoang, Siwei Guo, Nathan T. Hahn, Allen J. Bard, and C. Buddie Mullins, Nano Letters, 12, 26-32 (2012).
96. Xiaofan Zhang, Bingyan Zhang, Zhixiang Zuo, Mingkui Wang, and Yan Shen, Journal of Materials Chemistry A, 3, 10020-10025 (2015).
97. S. Hoang, S. Guo, and C. B. Mullins, Journal of Physical Chemistry C, 116, 23283-23290 (2012).
98. Feng Peng, Lingfeng Cai, Hao Yu, Hongjuan Wang, and Jian Yang, Journal of Solid State Chemistry, 181, 130-136 (2008).
99. Zhonghai Zhang, Lianbin Zhang, Mohamed Nejib Hedhili, Hongnan Zhang, and Peng Wang, Nano Letters, 13, 14-20 (2013).
100. Ying-Chih Pu, Gongming Wang, Kao-Der Chang, Yichuan Ling, Yin-Kai Lin, Bob C. Fitzmorris, Chia-Ming Liu, Xihong Lu, Yexiang Tong, Jin Z. Zhang et al., Nano Letters, 13, 3817-3823 (2013).
101. Hua Wang, Yusong Bai, Hao Zhang, Zhonghao Zhang, Jinghong Li, and Lin Guo, The Journal of Physical Chemistry C, 114, 16451-16455 (2010).
102. Néstor Guijarro, Teresa Lana-Villarreal, Iván Mora-Seró, Juan Bisquert, and Roberto Gómez, The Journal of Physical Chemistry C, 113, 4208-4214 (2009).
103. J. Luo, L. Ma, T. He, C. F. Ng, S. Wang, H. Sun, and H. J. Fan, Journal of Physical Chemistry C, 116, 11956-11963 (2012).
104. Yang Hou, Xinyong Li, Xuejun Zou, Xie Quan, and Guohua Chen, Environmental Science & Technology, 43, 858-863 (2009).
105. X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang, and L. M. Peng, Journal of Physical Chemistry C, 113, 7531-7535 (2009).
106. R. Long and O. V. Prezhdo, Journal of the American Chemical Society, 133, 19240-19249 (2011).

無法下載圖示 全文公開日期 2022/11/17 (校內網路)
全文公開日期 2027/11/17 (校外網路)
全文公開日期 2027/11/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE