簡易檢索 / 詳目顯示

研究生: Angelina Ersikapna Melanita Tarigan
Angelina Ersikapna Melanita Tarigan
論文名稱: 透過多重表面修飾技術提升普魯士藍衍生物電催化性能應用於電解水分解反應
Establishing Tandem Surface Engineering for High-efficiency Prussian Blue Analogues as Noble Metal-Free Electrocatalysts for Water Splitting
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 葉旻鑫
Min-Hsin Yeh
何國川
Kuo-Chuan Ho
江偉宏
Wei-Hung Chiang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 120
外文關鍵詞: Prussian blue analogues, UV/ozone activation
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Hydrogen is an eco-friendly and efficient alternative to renewable energy. The electrolytic splitting of water for the production of hydrogen has undergone tremendous development in recent years, corresponding to the growing need for clean energy. Electrocatalysts play a crucial role in hydrogen evolution reaction (HER) electrolysis owing to their diminishing overpotential. On the other hand, oxygen evolution reaction (OER) has slow kinetics that limit its electrochemical activity, requiring the generation of alkaline water oxidation electrocatalysts. While noble metal electrocatalysts possess better activity in OER and HER, their availability and high cost render them unattainable. Transitional metal-based electrocatalysts have shown promise in addressing these drawbacks. Prussian blue analogues (PBAs) are open-framework metal-organic frameworks (MOFs) with transition metal content, allowing for tailored physicochemical properties and potential water splitting applications. However, their limited surface area and inferior electrical conductivity minimize their activity in water-splitting processes, which inevitably diminishes their overall efficiency. Interestingly, the carbon-based electrocatalysts, especially zero-dimensional graphene quantum dot (GQD), have gain attentions due to their nanosized, capable of providing uniform coverage of the intended substance. By considering this, incorporating GQD into electrocatalysts, the electrical conductivity can be improved, leading to enhanced kinetic transport properties and providing excellent stability of catalysts. Heretofore, in this thesis, we aimed to establish tandem surface engineering for high-efficiency PBAs as noble metal-free electrocatalysts for water splitting, as the PBA still suffers from the lack of low surface area and electronic conductivity.

    In Chapter 4, tandem surface engineering via graphene quantum dots-assisted fluorinated NiFe Prussian blue analogue for OER was proposed: the first strategy involved surface reconstruction through the facile hydrothermal process of fluorination on NiFe PBA surfaces. The second strategy involved F-NiFe PBA modification by introducing GQD. The F- ions may participate in the change of the electronic structure without changing the framework structure of NiFe PBA, while the GQD will leading to enhance the catalytic activity. GQD/F-NiFe PBA has exhibited an overpotential of 318 mV at 50 mA cm-2 for OER and remains stable under a high current density. It is interesting to bring up that the F doping that will reconstruct the surface of NiFe-PBA and could support the GQD would alter the surfaces chemistry of F-NiFe PBA, which is favorable to increasing the electrical conductivity and electrocatalytic OER performance. The synergistic interactions of both surface reconstruction from F- ions and higher surface oxidation of GQD bring about a tremendously stable structure, boosting the performance of NiFe PBA.

    Furthermore, in Chapter 5, we propose to enhance the GQD decorated CoFe PBA by activating the surface engineering process through mild oxidation of UV/ozone treatment for HER. By incorporating GQD to provide an abundant lattice mismatch in the CoFe PBA electronic structures to facilitate faster kinetic and electron transport performance. X-ray absorption spectroscopy (XAS) revealed the role of UV/ozone activation, which effectively induced the electron density of Co atoms and confirmed that the transition metal Co elements are the most asymmetrically connected to oxygen atoms. The optimized as-assembled CoFe PBA/GQD-UV shows remarkable electrocatalytic performance toward HER, with a low overpotential of 77 mV for reaching a current density of 10 mA cm-2 with excellent durable current retention of 99.8% for 12 h under an extremely high current density of 500 mA cm-2 in an acidic solution.

    This research is crucial because it provides a new perspective on the surface engineering strategy of effective catalysts for water splitting, leading to the establishment of an affordable and sustainable preparation strategy for water splitting catalyst materials.

    Abstract I Table of Contents III List of Tables V List of Figures VI Nomenclatures VI Chapter 1 Introduction 1 1.1 Power to X as The Renewable Energy 1 1.2 Water Splitting 2 1.2.1 Oxygen Evolution Reaction 2 1.2.2 Hydrogen Evolution Reaction 3 1.3 Nobel Metal Electrocatalyst 5 1.4 Transition Metal-based Electrocatalysts 6 1.5 Prussian Blue Analogues (PBA) 7 1.6 Carbon-based Electrocatalysts 9 Chapter 2 Literature Review and Research Scope 11 2.1 Overview of Prussian blue analogues (PBA) 11 2.2 Overview of Graphene Quantum Dots (GQDs) 13 2.3 Overview of Heteroatom Doping 16 2.4 Overview of Ultraviolet/ozone Treatment 18 2.5 Oxygen and Hydrogen evolution reaction evaluating parameters 19 2.6 Motivation and Research Scope 21 Chapter 3 Experimental Procedure 23 3.1 Experimental Instrument and Chemicals 23 3.1.1 Experimental and analytical instruments 23 3.1.2 Electrochemical Analysis 23 3.1.3 Fourier-Transform Infrared (FT-IR) 27 3.1.4 Field Emission-Scanning Electron Miscroscopyc (FE-SEM) 27 3.1.5 Energy-dispersive X-ray spectroscopy (EDX) 28 3.1.6 Raman Spectroscopy 29 3.1.7 X-ray Diffractometer (XRD) 30 3.1.8 X-ray Absorption Spectroscopy (XAS) 31 3.1.9 X-ray Photoelectron Spectroscopy (XPS) 32 3.2 Experimental Materials 34 3.3 Experimental Procedure 34 3.3.1 Tandem Surface Engineering via Graphene Quantum Dots-assisted Fluorinated NiFe Prussian Blue Analogue for Oxygen Evolution Reaction 34 3.3.2 Surface Engineering Activation via UV/Ozone Treatment of CoFe Prussian Blue Analogue/Graphene Quantum Dots Nanocomposite for Hydrogen Evolution Reaction 36 Chapter 4 Tandem Surface Engineering via Graphene Quantum Dots-assisted Fluorinated NiFe Prussian Blue Analogue for Oxygen Evolution Reaction 39 4.1 Motivation and Conceptual Design 39 4.2 Result and Discussion 41 4.2.1 Characterization of fluorinated NiFe PBA 41 4.2.2 Electrocatalytic OER performance of F-doped NiFe PBA 43 4.2.3 The optimization of GQD-modified F-NiFe PBA 45 4.2.4 The origin of the synergistic interaction 52 4.2.5 Synergistic effect of GQD-modified F-NiFe-PBA towards the electrocatalytic OER performance 56 4.3 Summary 59 Chapter 5 Surface Engineering Activation via UV/Ozone Treatment of CoFe Prussian Blue Analogue/Graphene Quantum Dots Nanocomposite for Hydrogen Evolution Reaction 60 5.1 Motivation and Conceptual Design 60 5.2 Result and Discussion 62 5.2.1 Characterization of GQD integration into CoFe PBA 62 5.2.2 Electrochemical HER performance of GQD optimizations into CoFe PBA 66 5.2.3 Characterization of UV/ozone-activated CoFe PBA/GQD 67 5.2.4 Electrochemical HER performance of different exposure UV/ozone time for CoFe PBA/GQD 73 5.2.5 The Local Geometry Coordination Structure of Catalyst 75 5.2.6 Chemical Surface Analysis of Catalyst 77 5.2.7 HER Electrochemical Performance of UV/Ozone Activation 81 5.3 Summary 84 Chapter 6 Conclusion and Future Prospects 85 6.1 Conclusion 85 6.2 Future Prospects 88 Chapter 7 References 89

    (1) Daiyan, R.; MacGill, I.; Amal, R. Opportunities and challenges for renewable power-to-X. ACS Publications: 2020.
    (2) Tran‐Phu, T.; Daiyan, R.; Ta, X. M. C.; Amal, R.; Tricoli, A. From Stochastic Self‐Assembly of Nanoparticles to Nanostructured (Photo) Electrocatalysts for Renewable Power‐to‐X Applications via Scalable Flame Synthesis. Advanced Functional Materials. 2022, 32 (13), 2110020.
    (3) Sorrenti, I.; Rasmussen, T. B. H.; You, S.; Wu, Q. The role of power-to-X in hybrid renewable energy systems: A comprehensive review. Renewable and Sustainable Energy Reviews. 2022, 112380.
    (4) Daiyan, R.; MacGill, I.; Amal, R. Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters. 2020, 5 (12), 3843-3847. DOI: 10.1021/acsenergylett.0c02249.
    (5) Jiang, M.; Li, Y.; Lu, Z.; Sun, X.; Duan, X. Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers. 2016, 3 (5), 630-634.
    (6) Park, Y.; McDonald, K. J.; Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chemical Society Reviews. 2013, 42 (6), 2321-2337.
    (7) Khoo, H. H.; Tan, R. B. Environmental impact evaluation of conventional fossil fuel production (oil and natural gas) and enhanced resource recovery with potential CO2 sequestration. Energy & fuels. 2006, 20 (5), 1914-1924.
    (8) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chemical reviews.2010, 110 (11), 6446-6473.
    (9) Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M= P, S) for overall water splitting. Advanced Functional Materials. 2016, 26 (19), 3314-3323.
    (10) Chen, D.; Chen, C.; Baiyee, Z. M.; Shao, Z.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chemical reviews. 2015, 115 (18), 9869-9921.
    (11) Wang, W.; Xu, X.; Zhou, W.; Shao, Z. Recent progress in metal‐organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Advanced science. 2017, 4 (4), 1600371.
    (12) Zou, X.; Su, J.; Silva, R.; Goswami, A.; Sathe, B. R.; Asefa, T. Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co 3 O 4 nanomaterials derived from metal-embedded graphitic C 3 N 4. Chemical Communications. 2013, 49 (68), 7522-7524.
    (13) Du, Y.; Han, Y.; Huai, X.; Liu, Y.; Wu, C.; Yang, Y.; Wang, L. N-doped carbon coated FeNiP nanoparticles based hollow microboxes for overall water splitting in alkaline medium. International Journal of Hydrogen Energy. 2018, 43 (49), 22226-22234.
    (14) Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Ni 2 P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni 2 P nanoparticles. Energy & Environmental Science. 2015, 8 (8), 2347-2351.
    (15) Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews. 2017, 46 (2), 337-365.
    (16) Wang, J.; Zhong, H. x.; Qin, Y. l.; Zhang, X. b. An efficient three‐dimensional oxygen evolution electrode. Angewandte Chemie International Edition. 2013, 52 (20), 5248-5253. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angewandte Chemie International Edition. 2014, 53 (1), 102-121.
    (17) Yu, M.; Budiyanto, E.; Tüysüz, H. Principles of water electrolysis and recent progress in cobalt‐, nickel‐, and iron‐based oxides for the oxygen evolution reaction. Angewandte Chemie International Edition. 2022, 61 (1), e202103824.
    (18) Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science. 2014, 7 (7), 2255-2260.
    (19) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials. 2008, 20 (15), 2878-2887.
    (20) Chen, Y.; Yang, K.; Jiang, B.; Li, J.; Zeng, M.; Fu, L. Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A. 2017, 5 (18), 8187-8208.
    (21) Shim, G. W.; Hong, W.; Yang, S. Y.; Choi, S.-Y. Tuning the catalytic functionality of transition metal dichalcogenides grown by chemical vapour deposition. Journal of Materials Chemistry A. 2017, 5 (29), 14950-14968.
    (22) Turner, J. A. Sustainable hydrogen production. Science. 2004, 305 (5686), 972-974.
    (23) Zhang, J.; Zhang, Q.; Feng, X. Support and interface effects in water‐splitting electrocatalysts. Advanced Materials. 2019, 31 (31), 1808167.
    (24) Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature. 2012, 488 (7411), 294-303.
    (25) Ancona, M. A.; Antonioni, G.; Branchini, L.; De Pascale, A.; Melino, F.; Orlandini, V.; Antonucci, V.; Ferraro, M. Renewable Energy Storage System Based on a Power-to-Gas Conversion Process. Energy Procedia. 2016, 101, 854-861. DOI: https://doi.org/10.1016/j.egypro.2016.11.108.
    (26) Zeng, M.; Li, Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A. 2015, 3 (29), 14942-14962, 10.1039/C5TA02974K. DOI: 10.1039/C5TA02974K.
    (27) Rowley-Neale, S. J.; Brownson, D. A. C.; Smith, G. C.; Sawtell, D. A. G.; Kelly, P. J.; Banks, C. E. 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale. 2015, 7 (43), 18152-18168, 10.1039/C5NR05164A. DOI: 10.1039/C5NR05164A.
    (28) Lv, Z.; Mahmood, N.; Tahir, M.; Pan, L.; Zhang, X.; Zou, J.-J. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale. 2016, 8 (43), 18250-18269, 10.1039/C6NR06836G. DOI: 10.1039/C6NR06836G.
    (29) Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. The Journal of Physical Chemistry C. 2010, 114 (42), 18182-18197. DOI: 10.1021/jp1048887.
    (30) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials. 2016, 15 (1), 48-53.
    (31) Xing, Z.; Yang, X.; Asiri, A. M.; Sun, X. Three-Dimensional Structures of MoS2@Ni Core/Shell Nanosheets Array toward Synergetic Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces. 2016, 8 (23), 14521-14526. DOI: 10.1021/acsami.6b02331.
    (32) Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A.; Stamenkovic, V.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni (OH) 2/metal catalysts. Angewandte Chemie. 2012, 124 (50), 12663-12666.
    (33) Lv, Z.; Liu, D.; Tian, W.; Dang, J. Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm. 2020, 22 (27), 4580-4590.
    (34) Rinawati, M.; Wang, Y.-X.; Chen, K.-Y.; Yeh, M.-H. Designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution. Chemical Engineering Journal. 2021, 423, 130204.
    (35) Rinawati, M.; Wang, Y.-X.; Huang, W.-H.; Wu, Y.-T.; Cheng, Y.-S.; Kurniawan, D.; Haw, S.-C.; Chiang, W.-H.; Su, W.-N.; Yeh, M.-H. Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction. Carbon. 2022, 200, 437-447.
    (36) Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.; Teschner, D.; Selve, S. r.; Bergmann, A.; Nong, H. N.; Schlögl, R. Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). Journal of the American Chemical Society. 2015, 137 (40), 13031-13040.
    (37) Wannakao, S.; Maihom, T.; Kongpatpanich, K.; Limtrakul, J.; Promarak, V. Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks. Physical Chemistry Chemical Physics. 2017, 19 (43), 29540-29548.
    (38) Zeradjanin, A. R.; Grote, J. P.; Polymeros, G.; Mayrhofer, K. J. A critical review on hydrogen evolution electrocatalysis: Re‐exploring the volcano‐relationship. Electroanalysis. 2016, 28 (10), 2256-2269.
    (39) Rossmeisl, J.; Qu, Z.-W.; Zhu, H.; Kroes, G.-J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry. 2007, 607 (1-2), 83-89.
    (40) Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society. 2016, 138 (12), 4006-4009.
    (41) Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y. Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting. ACS Applied Materials & Interfaces. 2016, 8 (17), 10826-10834.
    (42) Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A. M.; Sun, X. Fe‐doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Advanced Materials. 2017, 29 (2), 1602441.
    (43) Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH hybrid nanotube arrays as high‐performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition. 2016, 55 (11), 3694-3698.
    (44) Laskowski, F. A.; Nellist, M. R.; Qiu, J.; Boettcher, S. W. Metal oxide/(oxy) hydroxide overlayers as hole collectors and oxygen-evolution catalysts on water-splitting photoanodes. Journal of the American Chemical Society. 2018, 141 (4), 1394-1405.
    (45) Chi, J.; Yu, H.; Qin, B.; Fu, L.; Jia, J.; Yi, B.; Shao, Z. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction. ACS Applied Materials & Interfaces. 2017, 9 (1), 464-471.
    (46) Zhao, W.; Wang, S.; Feng, C.; Wu, H.; Zhang, L.; Zhang, J. Novel Cobalt-Doped Ni0. 85Se Chalcogenides (Co x Ni0. 85–x Se) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting. ACS Applied Materials & Interfaces. 2018, 10 (47), 40491-40499.
    (47) Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy & Environmental Science. 2016, 9 (5), 1771-1782.
    (48) Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A. 2017, 5 (36), 18919-18932.
    (49) Singh, B.; Indra, A. Prussian blue-and Prussian blue analogue-derived materials: progress and prospects for electrochemical energy conversion. Materials Today Energy. 2020, 16, 100404.
    (50) Keggin, J.; Miles, F. Structures and formulae of the Prussian blues and related compounds. Nature. 1936, 137 (3466), 577-578.
    (51) Kettle, S. F.; Diana, E.; Marchese, E. M.; Boccaleri, E.; Stanghellini, P. L. The vibrational spectra of the cyanide ligand revisited: the ν (CN) infrared and Raman spectroscopy of Prussian blue and its analogues. Journal of Raman Spectroscopy. 2011, 42 (11), 2006-2014.
    (52) Kong, B.; Tang, J.; Wu, Z.; Wei, J.; Wu, H.; Wang, Y.; Zheng, G.; Zhao, D. Ultralight mesoporous magnetic frameworks by interfacial assembly of prussian blue nanocubes. Angewandte Chemie International Edition. 2014, 53 (11), 2888-2892.
    (53) Nai, J.; Lu, Y.; Yu, L.; Wang, X.; Lou, X. W. Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Advanced Materials. 2017, 29 (41), 1703870.
    (54) Xuan, C.; Wang, J.; Xia, W.; Peng, Z.; Wu, Z.; Lei, W.; Xia, K.; Xin, H. L.; Wang, D. Porous structured Ni–Fe–P nanocubes derived from a prussian blue analogue as an electrocatalyst for efficient overall water splitting. ACS Applied Materials & Interfaces. 2017, 9 (31), 26134-26142.
    (55) Xi, W.; Yan, G.; Lang, Z.; Ma, Y.; Tan, H.; Zhu, H.; Wang, Y.; Li, Y. Oxygen‐Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Small. 2018, 14 (42), 1802204.
    (56) Yu, Z.-Y.; Duan, Y.; Liu, J.-D.; Chen, Y.; Liu, X.-K.; Liu, W.; Ma, T.; Li, Y.; Zheng, X.-S.; Yao, T. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications. 2019, 10 (1), 2799.
    (57) Wang, Y.; Ma, J.; Wang, J.; Chen, S.; Wang, H.; Zhang, J. Interfacial Scaffolding Preparation of Hierarchical PBA‐Based Derivative Electrocatalysts for Efficient Water Splitting. Advanced Energy Materials. 2019, 9 (5), 1802939.
    (58) Lu, X. F.; Fang, Y.; Luan, D.; Lou, X. W. D. Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters. 2021, 21 (4), 1555-1565. DOI: 10.1021/acs.nanolett.0c04898.
    (59) Yadav, M. K.; Kumar, P.; Verma, R. Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes. Food chemistry. 2020, 332, 127346.
    (60) Dwivedi, N.; Dhand, C.; Kumar, P.; Srivastava, A. Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Materials Advances. 2021, 2 (9), 2892-2905.
    (61) Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y.-H.; Koo, C. M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon. 2015, 94, 494-500.
    (62) Kumar, P. Ultrathin 2D nanomaterials for electromagnetic interference shielding. Advanced Materials Interfaces. 2019, 6 (24), 1901454.
    (63) Ferrari, A. C.; Bonaccorso, F.; Fal'Ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H.; Palermo, V.; Pugno, N. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015, 7 (11), 4598-4810.
    (64) Zeng, Z.; Chen, S.; Tan, T. T. Y.; Xiao, F.-X. Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catalysis Today. 2018, 315, 171-183.
    (65) Kim, S.; Hwang, S. W.; Kim, M.-K.; Shin, D. Y.; Shin, D. H.; Kim, C. O.; Yang, S. B.; Park, J. H.; Hwang, E.; Choi, S.-H. Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano. 2012, 6 (9), 8203-8208.
    (66) Pan, D.; Zhang, J.; Li, Z.; Wu, M. Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. Advanced Materials. 2010, 22 (6), 734-738.
    (67) Mahmood, N.; Yao, Y.; Zhang, J. W.; Pan, L.; Zhang, X.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Advanced Science. 2018, 5 (2), 1700464.
    (68) Chen, J.; Wei, L.; Mahmood, A.; Pei, Z.; Zhou, Z.; Chen, X.; Chen, Y. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials. 2020, 25, 585-612. DOI: https://doi.org/10.1016/j.ensm.2019.09.024.
    (69) Zhang, R.; Wang, X.; Yu, S.; Wen, T.; Zhu, X.; Yang, F.; Sun, X.; Wang, X.; Hu, W. Ternary NiCo2Px nanowires as pH‐universal electrocatalysts for highly efficient hydrogen evolution reaction. Advanced Materials. 2017, 29 (9), 1605502.
    (70) Cheng, H.; Zhou, H.; Zhuang, Y.; Chen, B.; Chen, J.; Yuan, A. An integrated optimization of composition and pore structure boosting electrocatalytic oxygen evolution of Prussian blue analogue derivatives. Electrochimica Acta. 2022, 416, 140284. DOI: https://doi.org/10.1016/j.electacta.2022.140284.
    (71) Guo, Y.; Tang, J.; Wang, Z.; Sugahara, Y.; Yamauchi, Y. Hollow porous heterometallic phosphide nanocubes for enhanced electrochemical water splitting. Small. 2018, 14 (44), 1802442.
    (72) Kharangarh, P. R.; Ravindra, N. M.; Singh, G.; Umapathy, S. Synthesis of luminescent graphene quantum dots from biomass waste materials for energy‐related applications—an Overview. Energy Storage. 2023, 5 (3), e390.
    (73) Hu, Y.; Neumann, C.; Scholtz, L.; Turchanin, A.; Resch-Genger, U.; Eigler, S. Polarity, intramolecular charge transfer, and hydrogen bond co-mediated solvent effects on the optical properties of graphene quantum dots. Nano Research. 2023, 16 (1), 45-52.
    (74) Facure, M. H. M.; Schneider, R.; Mercante, L. A.; Correa, D. S. A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano. 2020, 7 (12), 3710-3734, 10.1039/D0EN00787K. DOI: 10.1039/D0EN00787K.
    (75) Lin, Y.-C.; Aulia, S.; Yeh, M.-H.; Hsiao, L.-Y.; Tarigan, A. M.; Ho, K.-C. Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science. 2023, 648, 193-202. DOI: https://doi.org/10.1016/j.jcis.2023.05.187.
    (76) Cirone, J.; Ahmed, S. R.; Wood, P. C.; Chen, A. Green synthesis and electrochemical study of cobalt/graphene quantum dots for efficient water splitting. The Journal of Physical Chemistry C. 2019, 123 (14), 9183-9191.
    (77) Hou, J.; Sun, Y.; Cao, S.; Wu, Y.; Chen, H.; Sun, L. Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting. ACS Applied Materials & Interfaces. 2017, 9 (29), 24600-24607.
    (78) Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S.-Z. Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters. 2019, 4 (4), 805-810. DOI: 10.1021/acsenergylett.9b00348.
    (79) Kasibhatta, K. R. D.; Madakannu, I.; Prasanthi, I. Hetero atom doped graphene nanoarchitectonics as electrocatalysts towards the oxygen reduction and evolution reactions in acidic medium. Journal of Inorganic and Organometallic Polymers and Materials. 2021, 31, 1859-1876.
    (80) Feng, W.; Long, P.; Feng, Y.; Li, Y. Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Advanced Science. 2016, 3 (7), 1500413.
    (81) Tang, X.; Liang, W.; Zhao, J.; Li, Z.; Qiu, M.; Fan, T.; Luo, C. S.; Zhou, Y.; Li, Y.; Guo, Z. Fluorinated phosphorene: electrochemical synthesis, atomistic fluorination, and enhanced stability. Small. 2017, 13 (47), 1702739.
    (82) Gu, X.; Liu, Z.; Liu, H.; Pei, C.; Feng, L. Fluorination of ZIF-67 framework templated Prussian blue analogue nano-box for efficient electrochemical oxygen evolution reaction. Chemical Engineering Journal. 2021, 403, 126371.
    (83) Li, M.; Wang, S.; Wang, X.; Tian, X.; Wu, X.; Zhou, Y.; Hu, G.; Feng, L. Structure evolution from Fe2Ni MIL MOF to carbon confined O-doped FeNi/FeF2 via partial fluorination for improved oxygen evolution reaction. Chemical Engineering Journal. 2022, 442, 136165.
    (84) Ma, F.; Wu, Q.; Liu, M.; Zheng, L.; Tong, F.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y.; et al. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces. 2021, 13 (4), 5142-5152. DOI: 10.1021/acsami.0c20886.
    (85) Gu, X.; Ji, Y.-G.; Tian, J.; Wu, X.; Feng, L. Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chemical Engineering Journal. 2022, 427, 131576.
    (86) Liu, H.; Zha, M.; Liu, Z.; Tian, J.; Hu, G.; Feng, L. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination. Chemical Communications. 2020, 56 (57), 7889-7892.
    (87) Pei, C.; Gu, Y.; Liu, Z.; Yu, X.; Feng, L. Fluoridated iron–nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction. ChemSusChem. 2019, 12 (16), 3849-3855.
    (88) Han, X.; Lin, L.; Pei, C.; Yu, X. Boosted Oxygen Evolution Reaction by Controllable Fluoridation on Porous Cobalt–Iron Nanoflakes. Energy & Fuels. 2022, 36 (4), 2123-2129.
    (89) Sham, M. L.; Li, J.; Ma, P. C.; Kim, J.-K. Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: a review. Journal of Composite Materials. 2009, 43 (14), 1537-1564.
    (90) Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. In International Journal of Molecular Sciences. 2013; Vol. 14, pp 12222-12248.
    (91) Osbeck, S.; Bradley, R.; Liu, C.; Idriss, H.; Ward, S. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres. Carbon. 2011, 49 (13), 4322-4330.
    (92) Pan, Y.; Wu, Y.; Hsain, H. A.; Su, R.; Cazorla, C.; Chu, D. Synergetic modulation of the electronic structure and hydrophilicity of nickel–iron hydroxide for efficient oxygen evolution by UV/ozone treatment. Journal of Materials Chemistry A. 2020, 8 (27), 13437-13442.
    (93) Cheng, T.-Y.; Chou, F.-P.; Huang, S.-C.; Chang, C.-Y.; Wu, T.-K. Electroluminescence and photocatalytic hydrogen evolution of S, N co-doped graphene oxide quantum dots. Journal of Materials Chemistry A. 2022, 10 (7), 3650-3658.
    (94) Wang, Z.; Xu, J.; Yang, J.; Xue, Y.; Dai, L. Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chemical Engineering Journal. 2022, 427, 131498. DOI: https://doi.org/10.1016/j.cej.2021.131498.
    (95) Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science. 2010, 36 (3), 307-326.
    (96) Fornasiero, P.; Cargnello, M. Morphological, Compositional, and Shape Control of Materials for Catalysis; Elsevier, 2017.
    (97) Han, L.; Dong, S.; Wang, E. Transition‐metal (Co, Ni, and Fe)‐based electrocatalysts for the water oxidation reaction. Advanced Materials. 2016, 28 (42), 9266-9291.
    (98) Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: a review. Acs Catalysis. 2016, 6 (12), 8069-8097.
    (99) Yu, F.; Yu, L.; Mishra, I.; Yu, Y.; Ren, Z.; Zhou, H. Recent developments in earth-abundant and non-noble electrocatalysts for water electrolysis. Materials Today Physics. 2018, 7, 121-138.
    (100) McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society. 2013, 135 (45), 16977-16987.
    (101) Benck, J. D.; Chen, Z.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. Acs Catalysis. 2012, 2 (9), 1916-1923.
    (102) Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. Journal of The Electrochemical Society. 1987, 134 (2), 377.
    (103) Wijeratne, K. Conducting Polymer Electrodes for Thermogalvanic Cells; Linköping University Electronic Press, 2019.
    (104) Kožejová, M.; Hložná, D.; Hua Liu, Y.; Ráczová, K.; Čižmár, E.; Orendáč, M.; Komanický, V. Growth of Pt-Ni nanoparticles of different composition using electrodeposition and characterization of their magnetic properties. Acta Physica Polonica A. 2017, 131 (4), 839-841.
    (105) Sivan, M.; Madheswaran, D.; Valtera, J.; Kostakova, E. K.; Lukas, D. Alternating current electrospinning: The impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Materials & Design. 2022, 213, 110308.
    (106) Li, Y.; Jiang, L.; Liu, F.; Li, J.; Liu, Y. Novel phosphorus-doped PbO 2–MnO 2 bicontinuous electrodes for oxygen evolution reaction. RSC Advances. 2014, 4 (46), 24020-24028.
    (107) Kumar, D.; Singh, B.; Bauddh, K.; Korstad, J. Bio-oil and biodiesel as biofuels derived from microalgal oil and their characterization by using instrumental techniques. Algae and Environmental Sustainability. 2015, 87-95.
    (108) Jusman, Y.; Ng, S. C.; Abu Osman, N. A. Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal. 2014, 2014.
    (109) Bernardi, J. Energy-dispersive X-ray spectroscopy. In Imaging Modalities for Biological and Preclinical Research: A Compendium, Volume 1: Part I: Ex vivo biological imaging, IOP Publishing, 2021.
    (110) Lewis, I. R.; Edwards, H. Handbook of Raman spectroscopy: from the research laboratory to the process line; CRC press, 2001.
    (111) Bunaciu, A. A.; UdriŞTioiu, E. G.; Aboul-Enein, H. Y. X-ray diffraction: instrumentation and applications. Critical Reviews in Analytical Chemistry. 2015, 45 (4), 289-299.
    (112) Chang, C.-J.; Zhu, Y.; Wang, J.; Chen, H.-C.; Tung, C.-W.; Chu, Y.-C.; Chen, H. M. In situ X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. Journal of Materials Chemistry A. 2020, 8 (37), 19079-19112.
    (113) Seyama, H.; Soma, M.; Theng, B. K. G. Chapter 2.5 - X-Ray Photoelectron Spectroscopy. In Developments in Clay Science, Bergaya, F., Lagaly, G. Eds.; Vol. 5; Elsevier, 2013; pp 161-176.
    (114) Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews. 2015, 44 (15), 5148-5180.
    (115) Wang, B.; Zhao, K.; Yu, Z.; Sun, C.; Wang, Z.; Feng, N.; Mai, L.; Wang, Y.; Xia, Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy & Environmental Science. 2020, 13 (7), 2200-2208.
    (116) Haase, F. T.; Bergmann, A.; Jones, T. E.; Timoshenko, J.; Herzog, A.; Jeon, H. S.; Rettenmaier, C.; Cuenya, B. R. Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nature Energy. 2022, 7 (8), 765-773.
    (117) Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single‐atom electrocatalysts. Angewandte Chemie International Edition. 2017, 56 (45), 13944-13960.
    (118) Zhao, L.; Dong, B.; Li, S.; Zhou, L.; Lai, L.; Wang, Z.; Zhao, S.; Han, M.; Gao, K.; Lu, M. Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2T x nanosheets for electrocatalytic oxygen evolution. ACS Nano. 2017, 11 (6), 5800-5807.
    (119) Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Materials Today Energy. 2019, 14, 100332.
    (120) Lin, Y.-C.; Chuang, C.-H.; Hsiao, L.-Y.; Yeh, M.-H.; Ho, K.-C. Oxygen plasma activation of carbon nanotubes-interconnected prussian blue analogue for oxygen evolution reaction. ACS Applied Materials & Interfaces. 2020, 12 (38), 42634-42643.
    (121) Wu, F.; Guo, X.; Hao, G.; Hu, Y.; Jiang, W. Synthesis of Iron–nickel sulfide porous nanosheets via a chemical etching/anion exchange method for efficient oxygen evolution reaction in alkaline media. Advanced Materials Interfaces. 2019, 6 (18), 1900788.
    (122) He, T.; Nsanzimana, J. M. V.; Qi, R.; Zhang, J.-Y.; Miao, M.; Yan, Y.; Qi, K.; Liu, H.; Xia, B. Y. Synthesis of amorphous boride nanosheets by the chemical reduction of Prussian blue analogs for efficient water electrolysis. Journal of Materials Chemistry A. 2018, 6 (46), 23289-23294.
    (123) Zhu, J.; Ren, X.; Liu, J.; Zhang, W.; Wen, Z. Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li–O2 battery. Acs Catalysis. 2015, 5 (1), 73-81.
    (124) Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe‐CoP electrocatalyst derived from a bimetallic Prussian Blue analogue for large‐current‐density oxygen evolution and overall water splitting. Advanced Science. 2018, 5 (10), 1800949.
    (125) Chang, H.; Qiu, L.-Y.; Chen, Y.-H.; Wang, P.-F.; Zhu, Y.-R.; Yi, T.-F. Rational construction of Prussian blue analogue with inverted pyramid morphology as ultrastable cathode material for lithium-ion battery. Composites Part B: Engineering. 2023, 250, 110434. DOI: https://doi.org/10.1016/j.compositesb.2022.110434.
    (126) Chen, Y.-Z.; Zhang, R.; Jiao, L.; Jiang, H.-L. Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews. 2018, 362, 1-23.
    (127) Chen, P.; Tong, Y.; Wu, C.; Xie, Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Accounts of Chemical Research. 2018, 51 (11), 2857-2866.
    (128) Luan, Y.; Jing, L.; Xie, Y.; Sun, X.; Feng, Y.; Fu, H. Exceptional photocatalytic activity of 001-facet-exposed TiO2 mainly depending on enhanced adsorbed oxygen by residual hydrogen fluoride. ACS Catalysis.2013, 3 (6), 1378-1385.
    (129) Chen, P.; Zhou, T.; Wang, S.; Zhang, N.; Tong, Y.; Ju, H.; Chu, W.; Wu, C.; Xie, Y. Dynamic migration of surface fluorine anions on cobalt‐based materials to achieve enhanced oxygen evolution catalysis. Angewandte Chemie International Edition. 2018, 57 (47), 15471-15475.
    (130) Yu, D.; Nagelli, E.; Du, F.; Dai, L. Metal-free carbon nanomaterials become more active than metal catalysts and last longer. The Journal of Physical Chemistry Letter. 2010, 1 (14), 2165-2173.
    (131) Park, J.; Moon, J.; Kim, C.; Kang, J. H.; Lim, E.; Park, J.; Lee, K. J.; Yu, S.-H.; Seo, J.-H.; Lee, J. Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materials. 2016, 8 (5), e272-e272.
    (132) Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science. 2012, 5 (10), 8869-8890.
    (133) Madadi, M.; Salarizadeh, P.; Moghadam, M. R.; Bazmandegan-Shamili, A. CuCo2O4 supported graphene quantum dots as a new and promising catalyst for methanol oxidation reaction. Journal of Electroanalytical Chemistry. 2023, 117532. DOI: https://doi.org/10.1016/j.jelechem.2023.117532.
    (134) Jin, H.; Huang, H.; He, Y.; Feng, X.; Wang, S.; Dai, L.; Wang, J. Graphene quantum dots supported by graphene nanoribbons with ultrahigh electrocatalytic performance for oxygen reduction. Journal of the American Chemical Society. 2015, 137 (24), 7588-7591.
    (135) Li, K.; Tong, Y.; Feng, D.; Chen, P. Fluorine-anion engineering endows superior bifunctional activity of nickel sulfide/phosphide heterostructure for overall water splitting. Journal of Colloid and Interface Science. 2022, 625, 576-584. DOI: https://doi.org/10.1016/j.jcis.2022.06.061.
    (136) Zhou, Y.-N.; Li, M.-X.; Dou, S.-Y.; Wang, H.-Y.; Dong, B.; Liu, H.-J.; Zhao, H.-Y.; Wang, F.-L.; Yu, J.-F.; Chai, Y.-M. Promoting Oxygen Evolution by Deep Reconstruction via Dynamic Migration of Fluorine Anions. ACS Applied Materials & Interfaces. 2021, 13 (29), 34438-34446. DOI: 10.1021/acsami.1c09308.
    (137) Zeng, Y.; Chen, G.-F.; Jiang, Z.; Ding, L.-X.; Wang, S.; Wang, H. Confined heat treatment of a Prussian blue analogue for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A. 2018, 6 (33), 15942-15946, 10.1039/C8TA05677C. DOI: 10.1039/C8TA05677C.
    (138) Gong, P.; Wang, J.; Hou, K.; Yang, Z.; Wang, Z.; Liu, Z.; Han, X.; Yang, S. Small but strong: The influence of fluorine atoms on formation and performance of graphene quantum dots using a gradient F-sacrifice strategy. Carbon. 2017, 112, 63-71.
    (139) Lee, P.-Y.; Lin, L.-Y.; Hsu, I.-J.; Chan, C.-Y.; Lee, J.-F.; Sheu, H.-S. Facile synthesis of perovskite ZIF67 derivative using ammonia fluoride and comparison with post-treated ZIF67 derivatives on energy storage ability. Electrochimica Acta. 2021, 389, 138680.
    (140) Pei, C.; Chen, H.; Dong, B.; Yu, X.; Feng, L. Electrochemical oxygen evolution reaction efficiently catalyzed by a novel porous iron-cobalt-fluoride nanocube easily derived from 3-dimensional Prussian blue analogue. Journal of Power Sources. 2019, 424, 131-137. DOI: https://doi.org/10.1016/j.jpowsour.2019.03.089.
    (141) Xue, Y.; Wang, Y.; Liu, H.; Yu, X.; Xue, H.; Feng, L. Electrochemical oxygen evolution reaction catalyzed by a novel nickel–cobalt-fluoride catalyst. Chemical Communications. 2018, 54 (48), 6204-6207.
    (142) Liu, Z.; Yu, X.; Yu, H.; Xue, H.; Feng, L. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction. ChemSusChem. 2018, 11 (16), 2703-2709.
    (143) Diao, F.; Rykær Kraglund, M.; Cao, H.; Yan, X.; Liu, P.; Engelbrekt, C.; Xiao, X. Moderate heat treatment of CoFe Prussian blue analogues for enhanced oxygen evolution reaction performance. Journal of Energy Chemistry. 2023, 78, 476-486. DOI: https://doi.org/10.1016/j.jechem.2022.11.050.
    (144) Tian, J.; Chen, J.; Liu, J.; Tian, Q.; Chen, P. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy. 2018, 48, 284-291.
    (145) Kim, M.; Hwang, S.; Yu, J.-S. Novel ordered nanoporous graphitic C 3 N 4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell. Journal of Materials Chemistry. 2007, 17 (17), 1656-1659.
    (146) Moosvi, S. K.; Majid, K.; Ara, T. Studying the electrical, thermal, and photocatalytic activity of nanocomposite of polypyrrole with the photoadduct of K 3 [Fe (CN) 6] and diethylenetriamine. Materials Research. 2016, 19, 983-990.
    (147) Kale, R. D.; Gorade, V. G.; Parmaj, O. Development and characterization study of silk filament reinforced chitosan biocomposite. Journal of Natural Fibers. 2018.
    (148) Wang, J.; Gili, A.; Grünbacher, M.; Praetz, S.; Epping, J. D.; Görke, O.; Schuck, G.; Penner, S.; Schlesiger, C.; Schomäcker, R. Silicon oxycarbonitride ceramic containing nickel nanoparticles: From design to catalytic application. Materials Advances. 2021, 2 (5), 1715-1730.
    (149) Beale, A. M.; Paul, M.; Sankar, G.; Oldman, R. J.; Catlow, C. R. A.; French, S.; Fowles, M. Combined experimental and computational modelling studies of the solubility of nickel in strontium titanate. Journal of Materials Chemistry. 2009, 19 (25), 4391-4400.
    (150) Su, X.; Wang, Y.; Zhou, J.; Gu, S.; Li, J.; Zhang, S. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society. 2018, 140 (36), 11286-11292. DOI: 10.1021/jacs.8b05294.
    (151) Cheng, C.-C.; Lin, T.-Y.; Ting, Y.-C.; Lin, S.-H.; Choi, Y.; Lu, S.-Y. Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis. Nano Energy. 2023, 108450.
    (152) Ma, F.; Wang, S.; Liang, X.; Wang, C.; Tong, F.; Wang, Z.; Wang, P.; Liu, Y.; Dai, Y.; Zheng, Z.; et al. Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Applied Catalysis B: Environmental. 2020, 279, 119371. DOI: https://doi.org/10.1016/j.apcatb.2020.119371.
    (153) Wang, J.-Y.; Ouyang, T.; Li, N.; Ma, T.; Liu, Z.-Q. S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@ Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. Science Bulletin. 2018, 63 (17), 1130-1140.
    (154) Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A. 2020, 8 (6), 2934-2961.
    (155) Zhu, S.; Qin, X.; Xiao, F.; Yang, S.; Xu, Y.; Tan, Z.; Li, J.; Yan, J.; Chen, Q.; Chen, M. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nature Catalysis. 2021, 4 (8), 711-718.
    (156) Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nature Catalysis. 2021, 4 (10), 850-859.
    (157) Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews. 2019, 120 (2), 851-918.
    (158) Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chemical Reviews. 2018, 118 (13), 6337-6408.
    (159) Li, Z.; Fu, J.-Y.; Feng, Y.; Dong, C.-K.; Liu, H.; Du, X.-W. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catalysis. 2019, 2 (12), 1107-1114.
    (160) He, T.; Wang, W.; Shi, F.; Yang, X.; Li, X.; Wu, J.; Yin, Y.; Jin, M. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature. 2021, 598 (7879), 76-81.
    (161) Yu, P.; Wang, F.; Shifa, T. A.; Zhan, X.; Lou, X.; Xia, F.; He, J. Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy. 2019, 58, 244-276.
    (162) Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews. 2019, 120 (2), 1438-1511.
    (163) Chuang, C.-H.; Hsiao, L.-Y.; Yeh, M.-H.; Wang, Y.-C.; Chang, S.-C.; Tsai, L.-D.; Ho, K.-C. Prussian blue analogue-derived metal oxides as electrocatalysts for oxygen evolution reaction: tailoring the molar ratio of cobalt to iron. ACS Applied Energy Materials. 2020, 3 (12), 11752-11762.
    (164) Xu, Y.; Zheng, S.; Tang, H.; Guo, X.; Xue, H.; Pang, H. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Materials. 2017, 9, 11-30.
    (165) Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications. Advanced Materials. 2017, 29 (14), 1605838.
    (166) Deng, C.; Wang, D. W. Functional electrocatalysts derived from Prussian blue and its analogues for metal‐air batteries: progress and prospects. Batteries & Supercaps. 2019, 2 (4), 290-310.
    (167) Zahir, N.; Magri, P.; Luo, W.; Gaumet, J. J.; Pierrat, P. Recent advances on graphene quantum dots for electrochemical energy storage devices. Energy & Environmental Materials. 2022, 5 (1), 201-214.
    (168) Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: from chemistry and physics to applications. Advanced Materials. 2019, 31 (21), 1808283.
    (169) Huang, Y.; Shi, T.; Zhong, Y.; Cheng, S.; Jiang, S.; Chen, C.; Liao, G.; Tang, Z. Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance. Electrochimica Acta. 2018, 269, 45-54. DOI: https://doi.org/10.1016/j.electacta.2018.02.145.
    (170) Gong, J.; Zhang, Z.; Xi, S.; Wang, W.; Lu, J.; Chen, P. Graphene quantum dot enabled interlayer spacing and electronic structure regulation of single-atom doped MoS2 for efficient alkaline hydrogen evolution. Chemical Engineering Journal. 2023, 451, 138951. DOI: https://doi.org/10.1016/j.cej.2022.138951.
    (171) Raza, R.; Ahmed, F.; Khan, A.; Iftikhar, M.; Abbas, S. M.; Ali, S. Effect of metal-reinforced UV-O3-TETA functionalized MWCNTs on thermomechanical and radiation-resistant properties of PMMA. Materials Today Communications. 2020, 24, 101181.
    (172) Azcatl, A.; McDonnell, S.; KC, S.; Peng, X.; Dong, H.; Qin, X.; Addou, R.; Mordi, G. I.; Lu, N.; Kim, J. MoS2 functionalization for ultra-thin atomic layer deposited dielectrics. Applied Physics Letters. 2014, 104 (11), 111601.
    (173) Foster, G. M.; Koehler, A.; Ebrish, M.; Gallagher, J.; Anderson, T.; Noesges, B.; Brillson, L.; Gunning, B.; Hobart, K. D.; Kub, F. Recovery from plasma etching-induced nitrogen vacancies in p-type gallium nitride using UV/O3 treatments. Applied Physics Letters. 2020, 117 (8), 082103.
    (174) Bhimanapati, G. R.; Hankins, T.; Lei, Y.; Vilá, R. A.; Fuller, I.; Terrones, M.; Robinson, J. A. Growth and Tunable Surface Wettability of Vertical MoS2 Layers for Improved Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces. 2016, 8 (34), 22190-22195. DOI: 10.1021/acsami.6b05848.
    (175) Liu, M.; Yu, F.; Ma, C.; Xue, X.; Fu, H.; Yuan, H.; Yang, S.; Wang, G.; Guo, X.; Zhang, L. Effective oxygen reduction reaction performance of FeCo alloys in situ anchored on nitrogen-doped carbon by the microwave-assistant carbon bath method and subsequent plasma etching. Nanomaterials. 2019, 9 (9), 1284.
    (176) Fan, M.; Wang, Z.; Sun, K.; Wang, A.; Zhao, Y.; Yuan, Q.; Wang, R.; Raj, J.; Wu, J.; Jiang, J. N B OH Site‐Activated Graphene Quantum Dots for Boosting Electrochemical Hydrogen Peroxide Production. Advanced Materials. 2023, 2209086.
    (177) Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Letters. 2012, 12 (8), 3925-3930.
    (178) Bhatt, P.; Banerjee, S.; Anwar, S.; Mukadam, M. D.; Meena, S. S.; Yusuf, S. M. Core–Shell Prussian Blue Analogue Molecular Magnet Mn1. 5 [Cr (CN) 6]· m H2O@ Ni1. 5 [Cr (CN) 6]· n H2O for Hydrogen Storage. ACS Applied Materials & Interfaces. 2014, 6 (20), 17579-17588.
    (179) Ma, F.; Wu, Q.; Liu, M.; Zheng, L.; Tong, F.; Wang, Z.; Wang, P.; Liu, Y.; Cheng, H.; Dai, Y. Surface fluorination engineering of NiFe Prussian blue analogue derivatives for highly efficient oxygen evolution reaction. ACS Applied Materials & Interfaces. 2021, 13 (4), 5142-5152.
    (180) Lin, X.; Li, Q.; Hu, Y.; Jin, Z.; Reddy, K. M.; Li, K.; Lin, X.; Ci, L.; Qiu, H. J. Revealing Atomic Configuration and Synergistic Interaction of Single‐Atom‐Based Zn‐Co‐Fe Trimetallic Sites for Enhancing Oxygen Reduction and Evolution Reactions. Small. 2023, 2300612.
    (181) Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L., Jr.; Roe, A. L.; Salowe, S. P.; Stubbe, J. EXAFS studies of binuclear iron proteins: hemerythrin and ribonucleotide reductase. Journal of the American Chemical Society. 1987, 109 (25), 7857-7864. DOI: 10.1021/ja00259a039.
    (182) Penner-Hahn, J. E.; Smith Eble, K.; McMurry, T. J.; Renner, M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; Hodgson, K. O. Structural characterization of horseradish peroxidase using EXAFS spectroscopy. Evidence for Fe = O ligation in compounds I and II. Journal of the American Chemical Society. 1986, 108 (24), 7819-7825. DOI: 10.1021/ja00284a054.
    (183) Ding, X.; Uddin, W.; Sheng, H.; Li, P.; Du, Y.; Zhu, M. Porous transition metal phosphides derived from Fe-based Prussian blue analogue for oxygen evolution reaction. Journal of Alloys and Compounds. 2020, 814, 152332.
    (184) Zeng, C.; Li, Q.; You, Y.; Sun, L.; Cheng, W.; Zheng, X.; Liu, S.; Wang, Q. Structural regulation of Fe–Co prussian blue analogues by incorporation of Pt for enhanced electrocatalytic overall water splitting. International Journal of Hydrogen Energy. 2022, 47 (83), 35149-35155. DOI: https://doi.org/10.1016/j.ijhydene.2022.08.102.
    (185) Ganesan, V.; Kim, J. Prussian blue analogue metal organic framework-derived CoSe2 nanoboxes for highly efficient oxygen evolution reaction. Materials Letters. 2018, 223, 49-52. DOI: https://doi.org/10.1016/j.matlet.2018.03.125.
    (186) Zhang, W.; Song, H.; Cheng, Y.; Liu, C.; Wang, C.; Khan, M. A. N.; Zhang, H.; Liu, J.; Yu, C.; Wang, L. Core–shell prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction. Advanced Science. 2019, 6 (7), 1801901.
    (187) Lei, S.; Li, Q.-H.; Kang, Y.; Gu, Z.-G.; Zhang, J. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction. Applied Catalysis B: Environmental. 2019, 245, 1-9. DOI: https://doi.org/10.1016/j.apcatb.2018.12.036.
    (188) Xiang, R.; Nong, Y.; Song, K.; Li, M.; Wang, X. Hierarchical Fe Doped Co Oxide/Hydroxide Nanosheet Arrays as Highly Efficient Oxygen Evolution Catalysts Prepared by Hydrothermal Etching of FeCo Prussian Blue Analogue. European Journal of Inorganic Chemistry. 2022, 2022 (17), e202200111.
    (189) Wang, D.-W.; Zhu, Y.-D.; Lei, S.; Chen, S.-M.; Gu, Z.-G.; Zhang, J. Epitaxial growth of prussian blue analogue derived NiFeP thin film for efficient electrocatalytic hydrogen evolution reaction. Journal of Solid State Chemistry. 2021, 293, 121779.
    (190) Ding, Z.; Yu, H.; Liu, X.; He, N.; Chen, X.; Li, H.; Wang, M.; Yamauchi, Y.; Xu, X.; Amin, M. A. Prussian blue analogue derived cobalt–nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science. 2022, 616, 210-220.
    (191) Huang, L.; Li, W.; Shen, X.; Sun, C.; Yang, J.; Shi, X.-r.; Zeng, M. Phosphorus-bridged ternary metal alloy encapsulated in few-layered nitrogen-doped graphene for highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A. 2022, 10 (13), 7111-7121.
    (192) Peng, Z.; Qiu, X.; Yu, Y.; Jiang, D.; Wang, H.; Cai, G.; Zhang, X.; Dong, Z. Polydopamine coated prussian blue analogue derived hollow carbon nanoboxes with FeP encapsulated for hydrogen evolution. Carbon. 2019, 152, 16-23.
    (193) Wang, C.-N.; Yu, Z.; Yao, H.; Jin, R.; Shi, K.; Li, Y.; Ma, S. Triangular Nanosheets Arrays of O Doped Co/Fe Disulfides as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Fe Disulfides as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction.
    (194) Yang, H.; Liu, J.; Chen, Z.; Wang, R.; Fei, B.; Liu, H.; Guo, Y.; Wu, R. Unconventional bi-vacancies activating inert Prussian blue analogues nanocubes for efficient hydrogen evolution. Chemical Engineering Journal. 2021, 420, 127671.
    (195) Gu, L.-L.; Gao, J.; Qiu, S.-Y.; Wang, K.-X.; Wang, C.; Sun, K.-N.; Zhu, X.-D. Prussian-blue-derived FeS2 spheres with abundant pore canals for efficient hydrogen evolution reaction. Chemical Engineering Science. 2022, 262, 118028.
    (196) Ma, X.; Chang, C.; Zhang, Y.; Niu, P.; Liu, X.; Wang, S.; Li, L. Synthesis of Co-based prussian blue analogues/dual-doped hollow carbon microsphere hybrids as high-performance bifunctional electrocatalysts for oxygen evolution and overall water splitting. ACS Sustainable Chemistry & Engineering. 2020, 8 (22), 8318-8326.
    (197) Li, F.; Yang, D.; Xu, H. Non‐metal‐heteroatom‐doped carbon dots: synthesis and properties. Chemistry–A European Journal. 2019, 25 (5), 1165-1176.
    (198) Feng, X.; Bai, Y.; Liu, M.; Li, Y.; Yang, H.; Wang, X.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy & Environmental Science. 2021, 14 (4), 2036-2089.

    無法下載圖示 全文公開日期 2028/08/17 (校內網路)
    全文公開日期 2028/08/17 (校外網路)
    全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE