簡易檢索 / 詳目顯示

研究生: 劉祐誠
Yu-Cheng Liu
論文名稱: 銥觸媒對甲烷碳-氫鍵活化與碳-氧鍵偶合作用之研究
C-H Activation and C-O Coupling of Methane using Ir Catalysts
指導教授: 林昇佃
Shawn D. Lin
口試委員: 林昇佃
Shawn D. Lin
江志強
Jyh-Chiang Jiang
曾堯宣
Yao-Hsuan Tseng
俞聖法
Sheng-Fa Yu
楊家銘
Chia-Min Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 208
中文關鍵詞: 氧化銥臨場光譜分析甲烷活化/轉化甲烷蒸氣重組產氫
外文關鍵詞: IrO2, In situ Spectroscopic Analyses, CH4 Activation/Conversion, Steam reforming of CH4, H2 Production
相關次數: 點閱:412下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物奈米顆粒具有獨特的物理化學及催化特性,是許多學者嘗試開發應用於甲烷低溫轉化處理的催化劑。本研究主要是合成出以銥為主的奈米觸媒,並探討其對於甲烷轉化反應的催化作用,希望藉此能開發出高效甲烷催化觸媒。本研究分為兩大主題:首先是以氧化銥(IrO2)奈米顆粒進行甲烷活化/轉化的測試,另一主題則是將銥原子分散於二氧化鈦載體上,進行甲烷蒸氣重組的評估。
    (I). 在第一個主題,主要以化學氧化/還原法製備IrO2,經500 oC鍛燒後形成約7 nm之金紅石(Rutile)結構IrO2,由臨場拉曼光譜(in situ Rama)觀察到在-105 oC即可催化甲烷活化/轉化,甲烷會進行脫氫,並與表面晶格氧(Obr)進行碳-氧偶合反應,形成CH2Obr與H2Obr物種,同時由臨場X光光譜(in situ XRD)也觀察到同時有IrO2部分還原,臨場紅外光譜(in situ DRIFT)觀察到室溫下甲烷活化/轉化形成CO2與H2O脫附,由電子密度泛函理論(DFT)證實IrO2低溫甲烷活化/轉化之上述反應作用,而IrO2 (211)較IrO2 (110)具有更低的反應能障利於反應進行。
    (II). 在第二主題,則以化學還原法製備高分散性銥擔載觸媒(Ir/TiO2),所製備之2 wt % Ir/TiO2中Ir平均粒徑為1.31 nm,觸媒分散度為76.5 %,TEM並顯示有單原子分散態的Ir。在質量空間速率(WHSV)為 1.5 gCH4 gcat-1 h-1、蒸氣/甲烷比(S/M)為2.72及溫度350-600 oC條件下可有效進行甲烷蒸氣重組(SRM),並在500 oC能穩定進行SRM反應48 h無失活現象發生,有接近理論氫氣產率(約4)的高H2產率且無CO生成。In situ Rama觀察到Ir/TiO2觸媒更可低至-125 oC即可進行甲烷活化/轉化反應,搭配in situ DRIFT證實,隨著溫度上升,甲烷脫氫至CHx (1 ≤ x ≤ 2),並與羥基(OH)和表面晶格氧(Obr)進行碳-氧偶合反應形成CHxOy (0 < x ≤ 2, 1 ≤ y ≤ 3),隨著脫氫或表面歧化以形成CO2,同時有效產氫。


    In recent years, several studies have demonstrated that metal oxides have excellent prospects for use in catalysis reaction owing to their physical and chemical properties. Recent experimental studies indicate a high interest in using metal-oxide catalysts for the C-H activation and for converting methane (CH4).under mild condition. The conversion of CH4 not only reduces the unnecessary emission of CH4 but also harvests useful chemicals. The goal of this research was to synthesize the high-performance of Ir-based nanomaterials for converting the CH4. Two kinds of CH4 application with important significance and applications were selected for study and development; namely, subambient CH4 activation/conversion and steam reforming of CH4 (SRM). The following research topics have been addressed in this dissertation:
    (I). The similarly facile subambient CH4 activation/conversion over IrO2 nanoparticles under atmospheric pressure was studied. The IrO2 nanoparticles were prepared by a modified chemical redox method. The prepared IrO2 nanoparticles after calcined at 500 oC exhibited the rutile structure with an average particle size of ~7 nm. In situ Raman and X-ray diffraction (XRD) analyses reveal that CH4 activation/conversion begins with C-H cleavage followed by C-O coupling with the surface bridged (Obr) oxygen on IrO2 as low as -105 oC, while partial reduction of IrO2 appeared. Besides, C-H of CH2Obr and CH2 and OH of H2Obr adspecies can be observed. In situ diffuse reflectance infrared Fourier-transformed spectroscopy (DRIFTS) elucidates CH4 activation/conversion over IrO2 nanoparticles at ambient temperature and further converted to gaseous CO2 and H2O. Furthermore, the IrO2 (211) facet was more active than IrO2 (110) facet according to the lower reaction barriers on IrO2 (211) facet by density functional theory (DFT) calculation. This clearly shows that CH4 activation/conversion on IrO2 is a structure-sensitive reaction and the results of this study can provide insights for the development of efficient catalysts for CH4 utilization.
    (II). SRM has been an extremely important process for the production of H2 and syngas and is utilized on the industrial scale. The atomically dispersion Ir/TiO2 catalysts prepared by chemical reduction method was studied. The Ir/TiO2 catalysts with 2 wt % of Ir loading can achieve that high Ir dispersion (76.5 %) even at low metal loading, while Ir/TiO2 catalysts with an average Ir size of 1.31 nm were observed by TEM. The 2 wt % Ir/TiO2 catalysts readily catalyzed SRM to nearly the thermodynamic conversion at the weight hourly space velocity (WHSV) of 1.5 gCH4 gcat-1 h-1 and steam/CH4 = 2.7 from 350 - 600 oC. The catalyst stability under reaction conditions was confirmed by no coke formation after 48 h isothermal reaction at 500 oC and a H2 yield of approximately 4 mol per mol CH4 reacted was achieved, where CO2 is the main carbon-containing product without any CO selectivity. In situ Raman spectra indicate that CH4 can be activated as low as - 125 oC. In situ DRIFT spectra indicate that the proposed SRM mechanism over Ir/TiO2 catalysts involves CH4 dehydrogenation to CHx (1 ≤ x ≤ 2), followed by C-O coupling with surface bridged oxygen (Obr) and hydroxy group (OH) to form CHxOy (0 < x ≤ 2, 1 ≤ y ≤ 3) adspecies when temperature was ramping; these adspecies can be further converted to CO2 with accompanying the H2 formation through dehydrogenation and disproportionation. Thus, SRM over Ir/TiO2 catalysts can become an effective and sustainable approach for H2 production.

    Acknowledgement………………………………………………………………………………………I Chinese Abstract………………………………………………………………………………III English Abstract……………………………………………………………………………………V Table of Contents……………………………………………………………………………VII List of Figures………………………………………………………………………………………X List of Tables………………………………………………………………………………XVIII List of Tables……………………………………………………………………………………XIX Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scope 3 Chapter 2 Literature Review 5 2.1 Partial Oxidation of Methane (POM) 9 2.1.1 Partial Oxidation of CH4 to CH3OH and HCHO 10 2.1.2 Direct Formation of CH3COOH from CH4 17 2.2 Methane Coupling Reactions 22 2.2.1 Oxidative Coupling of Methane (OCM) 23 2.2.2 Direct Coupling of Methane (DCM) 24 2.3 Other Oxidizers for Methane Activation/Conversion 28 2.3.1 H2S Steam Reforming of CH4 29 2.3.2 Sulfur as A Soft Oxidant for CH4 33 2.4 Steam Reforming of CH4 (SRM) 36 Chapter 3 Experiments Materials and Apparatus 40 3.1 Chemicals and gases 40 3.2 Instruments and Apparatus 42 3.3 Experimental procedures 51 3.3.1 Materials preparation 51 3.3.2 Computational Methods 55 3.3.3 Characterization and analyses 56 3.3.4 Test for Steam Reforming of Methane 58 Chapter 4 Subambient C-H Activation of Methane and Ethane over IrO2 Nanoparticles Probed by In situ Spectroscopic and Theoretical Studies 62 4.1 Introduction 62 4.2 Results and Discussion 66 4.2.1 Characterization of IrO2 66 4.2.2 In situ Raman and in situ XRD for CH4 activation 68 4.2.3 Thermogravimetric analysis of IrO2 74 4.2.4 In situ DRIFTS for activation/conversion of CH4 at ambient temperature 77 4.2.5 In situ DRIFTS for activation/conversion of CH4 at ambient temperature 80 4.2.6 H2O formation on IrO2 87 4.2.7 C2H6 activation by in situ Raman and in situ DRIFTS 90 4.3 Discussion 93 4.4 Summary 97 Chapter 5 Highly Active Supported Iridium Catalysts for Sustainable Hydrogen Production by Steam Reforming of Methane 98 5.1 Introduction 98 5.2 Results and Discussion 100 5.2.1 Characterization of Ir-TiO2 Catalyst 100 5.2.2 SRM test using Ir-TiO2 Catalyst 108 5.2.3 In situ Raman for SRM 118 5.2.4 In situ DRIFTS, ex situ UV-vis and ex situ UPS for SRM 121 5.3 Discussion 128 5.4 Summary 133 Chapter 6 Conclusions and Recommendation 133 Appendix A 136 Appendix B 141 Appendix C 153 Reference 158

    1. Abelló, S. and D. Montané, “Exploring Iron-based Multifunctional Catalysts for Fischer-tropsch Synthesis: A Review”, ChemSusChem, 4(11), 1538-1556 (2011).
    2. Aljama, H., J.K. Nørskov and F. Abild-Pedersen, “Theoretical Insights into Methane C-H Bond Activation on Alkaline Metal Oxides”, J. Phys. Chem. C, 121(30), 16440-16446 (2017).
    3. Angeli, S. D., G. Monteleone, A. Giaconia and A. A. Lemonidou, “State-of-the-art Catalysts for CH4 Steam Reforming at Low Temperature”, Int. J. Hydrog. Energy, 39(5), 1979-1997 (2014).
    4. Angeli, S.D., L. Turchetti, G. Monteleone and A. A. Lemonidou, “Catalyst Development for Steam Reforming of Methane and Model Biogas at Low Temperature”, Appl. Catal. B-Environ., 181, 34-46 (2016).
    5. Anic, K., A.V. Bukhtiyarov, H. Li, C. Rameshan and G. Rupprechter, “CO Adsorption on Reconstructed Ir(100) Surfaces from UHV to mbar Pressure: A LEED, TPD, and PM-IRAS Study”, J. Phys. Chem. C, 120(20), 10838-10848 (2016).
    6. Arcotumapathy, V., D. V. N. Vo, D. Chesterfield, C. T. Tin, A. Siahvashi, F. P. Lucien and A. A. Adesina, “Catalyst Design for Methane Steam Reforming”, Appl. Catal. A-Gen., 479, 87-102 (2014).
    7. Arndt, S., T. Otremba, U. Simon, M. Yildiz, H. Schubert and R. Schomäcker, “Mn-Na2WO4/SiO2 as Catalyst for the Oxidative Coupling of Methane. What is really known? ”, Appl. Catal. A-Gen., 425-426, 53-61 (2012).
    8. Asencios, Y. J. O. and E.M. Assaf, “Combination of Dry Reforming and Partial Oxidation of Methane on NiO-MgO-ZrO2 Catalyst: Effect of Nickel Content”, Fuel Process. Technol., 106, 247-252 (2013).
    9. Avetisov, A.K., J.R. Rostrup-Nielsen, V.L. Kuchaev, J.H. Bak Hansen, A.G. Zyskin and E. N. Shapatina, “Steady-state Kinetics and Mechanism of Methane Reforming with Steam and Carbon Dioxide over Ni Catalyst”, J. Mol. Catal. A-Chem., 315(2), 155-162 (2010).
    10. Ballarini, A. D., S. R. De Miguel, E. L. Jablonski, O. A. Scelza and A.A. Castro, “Reforming of CH 4 with CO2 on Pt-supported Catalysts: Effect of the Support on the Catalytic Behaviour”, Catal. Today, 107-108, 481-486 (2010).
    11. Baltrusaitis, J., I. Jansen and J. D. Schuttlefield Christus, “Renewable Energy Based Catalytic CH4 conversion to Fuels”, Catal. Sci. Technol., 4(8), 2397-2411 (2014).
    12. Belgued, M., P. Pareja, A. Amariglio and H. Amariglio, “Conversion of Methane into Higher Hydrocarbons on Platinum”, Nature, 352(6338), 789-790 (1991).
    13. Benlounes, O., S. Mansouri, C. Rabia and S. Hocine, “Direct Oxidation of Methane to Oxygenates over Heteropolyanions”, J. Nat. Gas Chem., 17(3), 309-312 (2008).
    14. Berlier, G., A. Zecchina, G. Spoto, G. Ricchiardi, S. Bordiga and C. Lamberti, “The Role of Al in the Structure and Reactivity of Iron Centers in Fe-ZSM-5-based Catalysts: A Statistically based Infrared Study”, J. Catal., 215(2), 264-270 (2003).
    15. Bobadilla, L. F., V. Garcilaso, M. A. Centeno, and J. A. Odriozola, “Monitoring the Reaction Mechanism in Model Biogas Reforming by In Situ Transient and Steady-State DRIFTS Measurements”, ChemSusChem, 10(6), 1193-1201 (2017).
    16. Bradford, M. C. J. and M. A. Vannice, “Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts II. Reaction Kinetics”, Appl. Catal. A-Gen., 142(1), 97-122 (1996).
    17. Brungs, A. J., A. P. E. York, J. B. Claridge, C. Márquez-Alvarez and M. L. H. Green, “Dry Reforming of Methane to Synthesis Gas over Supported Molybdenum Carbide Catalysts”, Catal. Lett., 70(3-4), 117-122 (2000).
    18. Carrara, C., J. Múnera, E. A. Lombardo and L. M. Cornaglia, “Kinetic and Stability Studies of Ru/La2O3 Used in the Dry Reforming of Methane”, Top. Catal., 51(1-4), 98-106 (2008).
    19. Cavani, F. and F. Trifirò, “Selective Oxidation of Light Alkanes: Interaction between the Catalyst and the Gas Phase on Different Classes of Catalytic Materials”, Catal. Today, 51(3-4), 561-580 (1999).
    20. Chan, S. I. and S. S. F. Yu, “Controlled Oxidation of Hydrocarbons by the Membrane-Bound Methane Monooxygenase: The Case for A Tricopper Cluster”, Accounts Chem. Res., 41(8), 969-979 (2008).
    21. Chan, S. I., Y. J. Lu, P. Nagababu, S. Maji, M. C. Hung, M. M. Lee, I. J. Hsu, P. D. Minh, J. C. H. Lai, K. Y. Ng, S., Ramalingam, S. S. F. Yu and M. K. Chan, “Efficient Oxidation of Methane to Methanol by Dioxygen Mediated by Tricopper Clusters”, Angew. Chem.-Int. Edit., 52(13), 3731-3735 (2013).
    22. Chakrapani, K and S. Sampath, “The Dual Role of Borohydride Depending on Reaction Temperature: Synthesis of Iridium and Iridium Oxide”, Chem. Commun., 51(47), 9690-9693 (2015).
    23. Chen, R. S., A., Korotcov, Y. S. Huang and D. S. Tsai, “One-Dimensional Conductive IrO2 Nanocrystals”, Nanotechnology, 17(9), R67-R87 (2006).
    24. Chen, Y. and D. G. Vlachos, “Density Functional Theory Study of Methane Oxidation and Reforming on Pt(111) and Pt(211) ”, Ind. Eng. Chem. Res., 51(38), 12244-12252 (2012).
    25. Christian Enger, B., R. aLødeng nd A. Holmen, “A Review of Catalytic Partial Oxidation of Methane to Synthesis Gas with Emphasis on Reaction Mechanisms over Transition Metal Catalysts”, Appl. Catal. A-Gen., 346(1–2), 1-27 (2008).
    26. Chua, Y. T., A. R. Mohamed and S. Bhatia, “Oxidative Coupling of Methane for the Production of Ethylene over Sodium-Tungsten-Manganese-Supported-Silica Catalyst (Na-W-Mn/SiO2)”, Appl. Catal. A-Gen., 343(1-2), 142-148 (2008).
    27. De Vos, D. E. and B. F. Sels, “Gold Redox Catalysis for Selective Oxidation of Methane to Methanol”, Angew. Chem.-Int. Edit., 44(1), 30-32 (2004).
    28. Didenko, L. P., V. R. Linde and V. I. Savchenko, “Partial Catalytic Oxidation and Condensation of Methane by Oxygen and Sulphur”, Catal. Today, 42(3), 367-370 (1998).
    29. Ding, Y. H., W. Huang and Y. G. Wang, “Direct Synthesis of Acetic Acid from CH4 and CO2 by A Step-wise Route over Pd/SiO2 and Rh/SiO2 Catalysts”, Fuel Process. Technol., 88(4), 319-324 (2007).
    30. Elkins, T. W., B. Neumann, M. Bäumer and H. E. Hagelin-Weaver, “Effects of Li Doping on MgO-supported Sm2O3 and TbOx Catalysts in the Oxidative Coupling of Methane”, ACS Catal., 4(6), 1972-1990 (2014).
    31. Farsi, A., V. Shadravan, S. S. Mansouri, G. Zahedi and Z. A. Manan, “A New Reactor Concept for Combining Oxidative Coupling and Steam Re-forming of Methane: Modeling and Analysis”, Int. J. Energy Res., 37(2), 129-152 (2013).
    32. Feio, L. S. F., C. E. Hori, S. Damyanova, F. B. Noronha, W. H. Cassinelli, C. M. P. Marques and J. M. C. Bueno, “The Effect of Ceria Content on the Properties of Pd/CeO2/Al2O3 Catalysts for Steam Reforming of Methane”, Appl. Catal. A-Gen., 316(1), 107-116 (2007).
    33. Ferreira-Aparicio, P., C. Márquez-Alvarez, I. Rodríguez-Ramos, Y. Schuurman, A. Guerrero-Ruiz and C. J. Mirodatos, “A Transient Kinetic Study of the Carbon Dioxide Reforming of Methane over Supported Ru Catalysts”, J. Catal., 184(1), 202-212 (1999).
    34. Fleischer, V., P. Littlewood, S. Parishan and R. Schomäcker, “Chemical Looping as Reactor Concept for the Oxidative Coupling of Methane over A Na2WO4/Mn/SiO2 Catalyst”, Chem. Eng. J., 306, 646-654 (2016).
    35. Fu, Q., H. Saltsburg and M. Flytzani-Stephanopoulos, “Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts”, Science, 301(5635), 935-938 (2003).
    36. Gabrienko, A. A., S. S. Arzumanov, M. V. Luzgin, A. G. Stepanov, and V. N. Parmon, “Methane Activation on Zn2+-Exchanged ZSM-5 Zeolites. The Effect of Molecular Oxygen Addition”, J. Phys. Chem. C, 119(44), 24910-24918 (2015).
    37. Galindo-Hernández, F., J. M. Domínguez and B. Portales, “Structural and Textural Properties of Fe2O3/γ-Al2O3 Catalysts and their Importance in the Catalytic Reforming of CH4 with H2S for Hydrogen Production”, J. Power Sources, 287, 13-24 (2015).
    38. Gallego, G. S., C. Batiot-Dupeyrat, J. Barrault, E. Florez and F. Mondragón, “Dry Reforming of Methane over LaNi1-yByO3±δ (B = Mg, Co) Perovskites used as Catalyst Precursor”, Appl. Catal. A-Gen.,334(1-2), 251-258 (2008).
    39. Garcia, L. a., R. French, S. Czernik and E. Chornet, “Catalytic Steam Reforming of Bio-oils for the Production of Hydrogen: Effects of Catalyst Composition”, Appl. Catal. A-Gen., 201(2), 225-239 (2000).
    40. García-Diéguez, M., I. S. Pieta, M. C. Herrera, M. A. Larrubia, I. Malpartida and L. J. Alemany, “Transient Study of the Dry Reforming of Methane over Pt Supported on Different γ-Al2O3”, Catal. Today, 149(3-4), 380-387 (2010).
    41. Ghobadi, A., T. G. Ulusoy, R. Garifullin, M. O. Guler and A. K. Okyay, “A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping Around TiO2 Nanowires for Superior Photocatalytic Performance”, Sci Rep, 6, 30587 (2016).
    42. Ghose, R., H. T. Hwang and A. Varma, “Oxidative Coupling of Methane using Catalysts Synthesized by Solution Combustion Method”, Appl. Catal. A-Gen., 452, 147-154 (2013).
    43. Godini, H. R., A. Gili, O. Görke, S. Arndt, U. Simon, A. Thomas, R. Schomäcker and G. Wozny, “Sol-gel Method for Synthesis of Mn-Na2WO4/SiO2 Catalyst for Methane Oxidative Coupling”, Catal. Today, 236(PART A), 12-22 (2014).
    44. Guo, X., G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan and X. Bao, “Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen”, Science, 344(6184), 616-619 (2014).
    45. Guo, J., Z. Hou, J. Gao and X. Zheng, “DRIFTS Study on Adsorption and Activation of CH4 and CO2 over Ni/SiO2 Catalyst with Various Ni Particle Sizes”, Chin. J. Catal., 28(1), 22-26 (2007).
    46. Gutiérrez, O. Y., C. Kaufmann and J. A. Lercher, “Synthesis of Methanethiol from Carbonyl Sulfide and Carbon Disulfide on (Co)K-promoted Sulfide Mo/SiO2 Catalysts”, ACS Catal., 1(11), 1595-1603 (2011).
    47. Gutiérrez, O. Y., L. Zhong, Y. Zhu and J. A. Lercher, “Synthesis of Methanethiol from CS2 on Ni-, Co-, and K-Doped MoS2/SiO2 Catalysts”, ChemCatChem, 5(11), 3249-3259 (2013).
    48. Hall, C. and R. N. Perutz, “Transition Metal Alkane Complexes”, Chem. Rev., 96(8), 3125-3146 (1996).
    49. Hammond, C., M. M. Forde, M. H. Ab Rahim, A. Thetford, Q. He, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, N. F. Dummer, D. M. Murphy, A. F. Carley, S. H. Taylor, D. J. Willock, E. E. Stangland, J. Kang, H. Hagen, C. J. Kiely and G. J. Hutchings, “Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-promoted Fe-ZSM-5”, Angew. Chem.-Int. Edit., 51(21), 5129-5133 (2012b).
    50. Hammond, C., S. Conrad and I. Hermans, “Oxidative Methane Upgrading”, ChemSusChem, 5(9), 1668-1686 (2012a).
    51. Haneda, M., Pusparatu, Y. Kintaichi, I. Nakamura, M. Sasaki, T. Fujitani and H. Hamada, “Promotional Effect of SO2 on the Activity of Ir/SiO2 for NO Reduction with CO under Oxygen-rich Conditions”, J. Catal., 229(1), 197-205 (2005).
    52. He, D., H. Hao, D. Chen, J. Liu, J. Yu, J. Lu, F. Liu, S. He, K. Li and Y. Luo, “Effects of Rare-earth (Nd, Er and Y) Doping on Catalytic Performance of HZSM-5 zeolite Catalysts for Methyl Mercaptan (CH3SH) Decomposition”, Appl. Catal. A-Gen., 533, 66-74 (2017).
    53. Hernández-Cristóbal, O., G. Díaz and A. Gómez-Cortés, “Effect of the Reduction Temperature on the Activity and Selectivity of Titania-Supported Iridium Nanoparticles for Methylcyclopentane Reaction”, Ind. Eng. Chem. Res., 53(24), 10097-10104 (2014).
    54. Hernández-Cristóbal, O., J. Arenas-Alatorre, G. Díaz, D. Bahena and M. J. Yacamán, “High Resolution HAADF Characterization of Ir/TiO2 Catalyst Reduced at 500 °C: Intensity Profile Analysis”, J. Phys. Chem. C, 119(21), 11672-11678 (2015).
    55. Herring, J. S., J. E. O’Brien, C. M. Stoots, G. L. Hawkes, J. J. Hartvigsen and M. Shahnam, “Progress in High-temperature Electrolysis for Hydrogen Production using Planar SOFC Technology”, Int. J. Hydrog. Energy, 32(4), 440-450 (2007).
    56. Hoffman, A. S., C. -Y. Fang and B. C. Gates, “Homogeneity of Surface Sites in Supported Single-Site Metal Catalysts: Assessment with Band Widths of Metal Carbonyl Infrared Spectra”, J. Phys. Chem. Lett., 7(19), 3854-3860 (2016).
    57. Horn, R. and R. Schlögl, “Methane Activation by Heterogeneous Catalysis”, Catal. Lett., 145(1), 23-39 (2015).
    58. Horn, R., K. A. Williams, N. J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S. A. Tupy and L. D. Schmidt, “Methane Catalytic Partial Oxidation on Autothermal Rh and Pt foam Catalysts: Oxidation and Reforming Zones, Transport Effects, and Approach to Thermodynamic Equilibrium”, J. Catal., 249(2), 380-393 (2007).
    59. Huang, C. and A. T-Raissi, “Liquid Hydrogen Production via Hydrogen Sulfide Methane Reformation”, J. Power Sources, 175(1), 464-472 (2008).
    60. Huang, T. -J. and S. -Y. Jhao, “Ni-Cu/samaria-doped Ceria Catalysts for Steam Reforming of Methane in the Presence of Carbon Dioxide”, Appl. Catal. A-Gen., 302(2), 325-332 (2006).
    61. Huang, W., C. Zhang, L. Yin and K. Xie, “Direct Synthesis of Acetic Acid from CH4 and CO2 in the Presence of O2 over a V2O5-PdCl2/Al2O3 Catalyst”, J. Nat. Gas Chem., 13(2), 113-115 (2004).
    62. Huang, W., K. C. Xie, J. P. Wang, Z. H. Gao, L. H. Yin and Q. M. Zhu, “Possibility of Direct Conversion of CH4 and CO2 to High-value Products”, J. Catal., 201(1), 100-104 (2001).
    63. Huguet, E., B. Coq, R. Durand, C. Leroi, R. Cadours and V. Hulea, “A Highly Eficient Process for Transforming Methyl Mercaptan into Hydrocarbons and H2S on Solid Acid Catalysts”, Appl. Catal. B-Environ., 134-135, 344-348 (2013).
    64. Hunter, N. R., H. D. Gesser, L. A. Morton, P. S. Yarlagadda and D. P. C. Fung, “Methanol Formation at High pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane”, Appl. Catal., 57(1), 45-54 (1990).
    65. Ito, T., J. Wang, C. H. Lin and J. H. Lunsford, “Oxidative Dimerization of Methane over a Lithium-promoted Magnesium Oxide Catalyst”, J. Am. Chem. Soc., 107(18), 5062-5068 (1985).
    66. Jeong, M. G., Y. D. Kim, S. Park, P. Kasinathan, Y. K. Hwang, J. S. Chang and Y. K. Park, “Preparation of ZnO/Al2O3 Catalysts by using Atomic Layer Deposition for Plasma-assisted Non-oxidative Methane Coupling”, J. Korean Phys. Soc., 68(10), 1221-1227 (2016).
    67. Jiang, J. C., J. C. Chang, B. C., Wang, S. H. Lin, Y. T. Lee and H. C. Chang, “The Free-OH Stretching Frequencies of 3-coordinated H2O in Water Clusters and on Ice Surfaces”, Chem. Phys. Lett., 289(3-4), 373-382 (1998).
    68. Jiménez-González, C., Z. Boukha, B. de Rivas, J. R. González-Velasco, J. I. Gutiérrez-Ortiz and R. López-Fonseca, “Behavior of Coprecipitated NiAl2O4/Al2O3 Catalysts for Low-Temperature Methane Steam Reforming”, Energy Fuels, 28(11), 7109-7121 (2014).
    69. Jones, G., J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J. R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested and J. K. Nørskov, “First Principles Calculations and Experimental Insight into Methane Steam Reforming over Transition Metal Catalysts”, J. Catal., 259(1), 147-160 (2008).
    70. Jones, G., J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J. R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested and J. K. Nørskov, “The Effect of Ceria Content on the Properties of Pd/CeO2/Al2O3 Catalysts for Steam Reforming of Methane”, J. Catal., 259(1), 147-160 (2008).
    71. Kalamaras, C., D. Palomas, R. Bos, A. Horton, M. Crimmin and K. Hellgardt, “Selective Oxidation of Methane to Methanol over Cu- And Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio”, Catal. Lett., 146(2), 483-492 (2016).
    72. Kehres, J., J. G. Jakobsen, J. W. Andreasen, J. B. Wagner, H. Liu, A. Molenbroek, J. Sehested, I. Chorkendorff and T. J. Vegge, “Dynamical Properties of a Ru/MgAl 2O4 Catalyst during Reduction and Dry Methane Reforming”, Phys. Chem. C, 116(40), 21407-21415 (2012).
    73. Keller, G. E. and M. M. Bhasin, “Synthesis of Ethylene via Oxidative Coupling of Methane. I. Determination of Active Catalysts”, J. Catal., 73(1), 9-19 (1982).
    74. Khani, Y., Z. Shariatinia and F. Bahadoran, “High Catalytic Activity and Stability of ZnLaAlO4 Supported Ni, Pt and Ru Nanocatalysts Applied in the Dry, Steam and Combined Dry-steam Reforming of Methane”, Chem. Eng. J., 299, 353-366 (2016).
    75. Kwapien, K., J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke and R. Schlögl, “Sites for Methane Activation on Lithium-doped Magnesium Oxide Surfaces”, Angew. Chem.-Int. Edit., 53(33), 8774-8778 (2014).
    76. Latimer, A. A., A. R. Kulkarni, H. Aljama, J. H. Montoya, J. S. Yoo, C. Tsai, F. Abild-Pedersen, F. Studt and J. K. Nørskov, “Understanding Trends in C-H bond Activation in Heterogeneous Catalysis”, Nat. Mater., 16(2), 225-229 (2017).
    77. Le, H.V., S. Parishan, A. Sagaltchik, C. Göbel, C. Schlesiger, W. Malzer, A. Trunschke, R. Schomäcker and A. Thomas, “Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol”, ACS Catal., 7(2), 1403-1412 (2017).
    78. Lee, Y., J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, “Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions”, J. Phys Chem. Lett., 3(3), 399-404 (2012).
    79. Liang, Z., T. Li, M. Kim, A. Asthagiri and J. F. Weaver, “Low-temperature Activation of Methane on the IrO2(110) Surface”, Science, 356(6335), 299-303 (2017).
    80. Lin, J., A. Wang, B. Qiao, X. Liu, X. Yang, X. Wang, J. Liang, J. Li, J. Liu and T. Zhang, “Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction”, J. Am. Chem. Soc., 135(41), 15314-15317 (2013).
    81. Lin, S. D., H. Cheng and T. C. Hsiao, “In situ DRIFTS Study on the Methanol Oxidation by Lattice Oxygen over Cu/ZnO catalyst”, J. Mol. Catal. A-Chem., 342-343, 35-40 (2011).
    82. Liu, C. C., C. Y. Mou, S. S. F. Yu and S. I. Chan, “Heterogeneous Formulation of the Tricopper Complex for Efficient Catalytic Conversion of Methane into Methanol at Ambient temperature and pressure”, Energy Environ. Sci., 9(4), 1361-1374 (2016).
    83. Liu,Y. C., C. H. Yeh, Y. F. Lo, S. D. Lin and J. C. Jiang, “Subambient C-H Activation of Methane over IrO2 Nanoparticles as Probed by In-situ Spectroscopy and Theoretical Study”, ACS Catal. (revised) (2018).
    84. Lunsford, J. H. “Catalytic Conversion of Methane to more Useful Chemicals and Fuels: A Challenge for the 21st Century”, Catal. Today, 63(2-4), 165-174 (2000).
    85. Luo, J. Z., Z. L. Yu, C. F. Ng and C. T. Au, “CO2/CH4 Reforming over Ni-La2O3/5A: An Investigation on Carbon Deposition and Reaction Steps”, J. Catal., 194(2), 198-210(2000).
    86. Maestri, M., D.G. Vlachos, A. Beretta, G. Groppi and E. Tronconi, “Steam and Dry Reforming of Methane on Rh: Microkinetic Analysis and Hierarchy of Kinetic Models”, J. Catal., 259(2), 211-222 (2008).
    87. Maluf, S. S. and E. M. Assaf, “Ni Catalysts with Mo Promoter for Methane Steam Reforming”, Fuel, 88(9), 1547-1553 (2009).
    88. Mansouri, S., O. Benlounes, C. Rabia, R., Thouvenot, M. M. Bettahar and S. Hocine, “Partial Oxidation of Methane over Modified Keggin-type Polyoxotungstates”, J. Mol. Catal. A-Chem., 379, 255-262 (2013).
    89. Martin, N. M., M. Van den Bossche, A. Hellman, H. Grönbeck, C. Hakanoglu, J. Gustafson, S. Blomberg, N. Johansson, Z., Liu, S. Axnanda, J. F. Weaver and E. Lundgren, “Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films”, ACS Catal., 4(10), 3330-3334 (2014).
    90. Martínez-Salazar, A. L., J.A. Melo-Banda, A. I. Reyes de la Torre, Y. Salazar-Cerda, M. A. Coronel-García, B. Portales Martínez, V. H. Martínez-Sifuentes, J. M. Domínguez-Esquivel and R. Silva Rodrigo, “Hydrogen Production by Methane Reforming with H2S using Mo, Cr/ZrO2–SBA15 and Mo, Cr/ZrO2–La2O3 Catalysts”, Int. J. Hydrog. Energy, 40(48), 17272-17283 (2015).
    91. Matsumura, Y. and T. Nakamori, “Steam Reforming of Methane over Nickel Catalysts at Low Reaction temperature”, Appl. Catal. A-Gen., 258(1), 107-114 (2004).
    92. Mei, D., V. -A. Glezakou, V. Lebarbier, L. Kovarik, H. Wan, K. O. Albrecht, M. Gerber, R. Rousseau and R. A. Dagle, “Highly Active and Stable MgAl2O4-supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study”, J. Catal., 316(Supplement C), 11-23 (2014).
    93. Michalkiewicz, B. “Partial Oxidation of Methane to Formaldehyde and Methanol using Molecular Oxygen over Fe-ZSM-5”, Appl. Catal. A-Gen., 277(1-2), 147-153 (2004).
    94. Nakagawa, K., K. Anzai, N. Matsui, N. Ikenaga, T. Suzuki, Y. Teng, T. Kobayashi and M. Haruta, “Effect of Support on the Conversion of Methane to Synthesis Gas over Supported Iridium Catalysts”, Catal. Lett., 51(3), 163-167 (1998).
    95. Narsimhan, K., K. Iyoki, K. Dinh and Y. Román-Leshkov, “Catalytic Oxidation of Methane into Methanol over Copper-exchanged Zeolites with Oxygen at Low temperature”, ACS Central Sci., 2(6), 424-429 (2016).
    96. Narsimhan, K., V. K. Michaelis, G. Mathies, W. R. Gunther, R. G. Griffin and Y. Román-Leshkov, “Methane to Acetic Acid over Cu-exchanged Zeolites: Mechanistic Insights from a Site-specific Carbonylation Reaction”, J. Am. Chem. Soc., 137(5), 1825-1832 (2015).
    97. Navarro, R. M., M. A. Peña and J. L. G. Fierro, “Hydrogen Production Reactions from Carbon Feedstocks:  Fossil Fuels and Biomass”, Chem. Rev., 107(10), 3952-3991 (2007).
    98. Nieva, M. A., M. M. Villaverde, A. Monzón, T. F. Garetto and A. J. Marchi, “Steam-methane Reforming at Low temperature on Nickel-based Catalysts”, Chem. Eng. J., 235, 158-166 (2014).
    99. Oda, A., H. Torigoe, A. Itadani, T. Ohkubo, T. Yumura, H. Kobayashi and Y. Kuroda, “An Important Factor in CH4 Activation by Zn ion in Comparison with Mg ion in MFI: The Superior Electron-accepting Nature of Zn2+”, J. Phys. Chem. C, 118(28), 15234-15241 (2014).
    100. Ohsaka, T., F. Izumi and Y. Fujiki, “Raman Spectrum of Anatase, TiO2”, J. Raman Spectrosc., 7(6), 321-324 (1978).
    101. Okolie, C. B., Y. F.; Y. Lyu, M. M. Yung, M. H. Engelhard, L. Kovarik, E. Stavitski, C. Sievers, “Conversion of Methane to Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor”, Angew. Chem.-Int. Edit., 56(44), 13876-13881 (2017)
    102. Pak, S., P. Qiu and J. H. Lunsford, “Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO Catalysts”, J. Catal., 179(1), 222-230 (1998).
    103. Pakhare, D., C. Shaw, D. Haynes, D. Shekhawat and J. Spivey, “Effect of Reaction temperature on Activity of Pt- and Ru-substituted Lanthanum Zirconate Pyrochlores (La2Zr2O7) for Dry (CO2) Reforming of Methane (DRM)”, J. CO2 Util., 1, 37-42 (2013).
    104. Pakhare, D., and J. Spivey, “A Review of Dry (CO2) Reforming of Methane over Noble Metal Catalysts”, Chem. Soc. Rev., 43(22), 7813-7837 (2014).
    105. Parfenov, M. V., E. V. Starokon, L. V. Pirutko and G. I. Panov, “Quasicatalytic and Catalytic Oxidation of Methane to Methanol by Nitrous Oxide over FeZSM-5 Zeolite”, J. Catal., 318, 14-21 (2014).
    106. Park, D. and J. Lee, “Biological Conversion of Methane to Methanol”, Korean J. Chem. Eng., 30(5), 977-987 (2013).
    107. Patil, U., Y. Saih, E. Abou-Hamad, A. Hamieh, J. D. A. Pelletier and J. M. Basset, “Low temperature Activation of Methane over a Zinc-exchanged Heteropolyacid as An Entry to its Selective Oxidation to Methanol and Acetic Acid”, Chem. Commun., 12348-12351 (2014).
    108. Peneau, V., R. D. Armstrong, G. Shaw, J. Xu, R. L. Jenkins, D. J. Morgan, N. Dimitratos, S. H., Taylor, H. W. Zanthoff, S. Peitz, G. Stochniol, Q. He, C. J. Kiely and G. J. Hutchings, “The Low-Temperature Oxidation of Propane by using H2O2 and Fe/ZSM-5 Catalysts: Insights into the Active Site and Enhancement of Catalytic Turnover Frequencies”, ChemCatChem, 9(4), 642-650 (2017).
    109. Peter, M. and T. J. Marks, “Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations”, J. Am. Chem. Soc., 137(48), 15234-15240 (2015).
    110. Pham, T. L. M., E. G. Leggesse and J. C. Jiang, “Ethylene Formation by Methane Dehydrogenation and C-C Coupling Reaction on a Stoichiometric IrO2 (110) Surface - A Density Functional Theory Investigation”, Catal. Sci. Technol., 5(8), 4064-4071 (2015).
    111. Pompeo, F., D. Gazzoli and N. N. Nichio, “Stability Improvements of Ni/α-Al2O3 Catalysts to obtain Hydrogen from Methane Reforming”, Int. J. Hydrog. Energy, 34(5), 2260-2268 (2009).
    112. Qi, Y., Z. Cheng and Z. Zhou, “Steam Reforming of Methane over Ni Catalysts Prepared from Hydrotalcite-type Precursors: Catalytic Activity and Reaction Kinetics”, Chin. J. Chem. Eng., 23(1), 76-85 (2015).
    113. Qiao, B., A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li and T. Zhang, “Single-atom Catalysis of CO Oxidation using Pt1/FeOx”, Nat. Chem., 3(8), 634-641 (2011).
    114. Que Jr, L. and W. B. Tolman, “Biologically Inspired Oxidation Catalysis”, Nature, 455(7211), 333-340 (2008).
    115. Ratnasamy, C. and J. P. Wagner, “Water Gas Shift Catalysis”, Catal. Rev.-Sci. Eng., 51(3), 325-440 (2009).
    116. Roh, H. -S., I. -H. Eum and D. -W. Jeong, “Low temperature Steam Reforming of mMthane over Ni–Ce(1−x)Zr(x)O2 Catalysts under Severe Condition”, Renew. Energy, 42, 212-216 (2012).
    117. Roh, H. S., K. Y. Koo, J. H. Jeong, Y. T. Seo, D. J. Seo, Y. S. Seo, W. L. Yoon and S. B. Park, “Combined Reforming of Methane over Supported Ni Catalysts”, Catal. Lett., 117(1-2), 85-90 (2007).
    118. Sadjadi, S., S. Jašo, H. R. Godini, S. Arndt, M. Wollgarten, R. Blume, O. Görke, R. Schomäcker, G. Wozny and U. Simon, “Feasibility Study of the Mn-Na2WO4/SiO2 Catalytic System for the Oxidative Coupling of Methane in a Fluidized-bed Reactor”, Catal. Sci. Technol., 5(2), 942-952 (2015).
    119. Sadykov, V., N. Mezentseva, G. Alikina, R. Bunina, V. Pelipenko, A. Lukashevich, S. Tikhov, V. Usoltsev, Z. Vostrikov, O. Bobrenok, A. Smirnova, J. Ross, O. Smorygo and B. Rietveld, “Nanocomposite Catalysts for Internal Steam Reforming of Methane and Biofuels in Solid Oxide Fuel Cells: Design and Performance”, Catal. Today, 146(1), 132-140 (2009).
    120. Schädel, B. T. and O. Deutschmann, “Steam Reforming of Natural Gas on Noble-metal Based Catalysts: Predictive Modeling”, Stud. Surf. Sci. Catal., 167, 207-212 (2007).
    121. Serres, T., L. Dreibine and Y. Schuurman, “Synthesis of Enamel-protected Catalysts for Microchannel Reactors: Application to Methane Oxidative Coupling”, Chem. Eng. J., 213, 31-40 (2012).
    122. Smeets, P. J., R.G. Hadt, J. S. Woertink, P. Vanelderen, R. A. Schoonheydt, B. F. Sels and E. I. Solomon, “Oxygen Precursor to the Reactive Intermediate in Methanol Synthesis by Cu-ZSM-5”, J. Am. Chem. Soc., 132(42), 14736-14738 (2010).
    123. Solymosi, F. and J. Raskó, “An Infrared Study on the Formation of Isocyanate in the NO + CO Reaction on Supported Ir Catalyst”, J. Catal., 63(1), 217-225 (1980).
    124. Solymosi, F., E. Novak and A. Molnar, “Infrared Spectroscopic Study on Carbon Monoxide-induced Structural changes of Iridium on an Alumina Support” J. Phys. Chem., 94(18), 7250-7255 (1990).
    125. Soulivong, D., S. Norsic, M. Taoufik, C. Copéret, J. Thivolle-Cazat, S. Chakka and J. M. Basset, “Non-oxidative Coupling Reaction of Methane to Ethane and Hydrogen Catalyzed by the Silica-supported Tantalum hydride: (≡SiO)2Ta-H”, J. Am. Chem. Soc., 130(15), 5044-5045 (2008) .
    126. Spivey, J. J. and G. Hutchings, “Catalytic Aromatization of Methane”, Chem. Soc. Rev., 43(3), 792-803 (2014).
    127. Starokon, E. V., M. V. Parfenov, L. V. Pirutko, S. I. Abornev and G. I. Panov, “Room-temperature Oxidation of Methane by α-oxygen and Extraction of Products from the FeZSM-5 Surface”, J. Phys. Chem. C, 115(5), 2155-2161 (2011).
    128. Sun, M., E. Abou-Hamad, A. J. Rossini, J. Zhang, A. Lesage, H. Zhu, J. Pelletier, L. Emsley, V. Caps and J. M. Basset, “Methane reacts with Heteropolyacids Chemisorbed on Silica to produce Acetic Acid under Soft Conditions”, J. Am. Chem. Soc., 135(2), 804-810 (2013).
    129. Taifan, W. and J. Baltrusaitis, “CH4 Conversion to value added Products: Potential, Limitations and Extensions of a Single Step Heterogeneous Catalysis”, Appl. Catal. B-Environ., 198, 525-547 (2016).
    130. Takanabe, K. and E. Iglesia, “Mechanistic Aspects and Reaction Pathways for Oxidative Coupling of Methane on Mn/Na2WO4/SiO2 Catalysts”, J. Phys. Chem. C, 113(23), 10131-10145 (2009).
    131. Takanabe, K. and E. Iglesia, “Rate and Selectivity Enhancements mediated by OH radicals in the Oxidative Coupling of Methane Catalyzed by Mn/Na2WO4/SiO2”, Angew. Chem.-Int. Edit., 47(40), 7689-7693 (2008).
    132. Tang, P., Q. Zhu, Z. Wu and D. Ma, “Methane Activation: The Past and Future”, Energy Environ. Sci., 7(8), 2580-2591 (2014).
    133. Taylor, S. H., J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner and C. W. Lembacher, “The Partial Oxidation of Methane to Methanol: An approach to catalyst Design”, Catal. Today, 42(3), 217-224 (1998).
    134. Teshager, M. A., S. D. Lin, B. J. Hwang, F. M. Wang, S. Hy and A. M. Haregewoin, “In Situ DRIFTS Analysis of Solid-Electrolyte Interphase Formation on Li-Rich Li1.2Ni0.2Mn0.6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition”, ChemElectroChem, 3(2), 337-345 (2016).
    135. Trimm, D. L., “Coke Formation and Minimisation during Steam Reforming Reactions”, Catal. Today, 37(3), 233-238 (1997).
    136. Uzun, A., V. Ortalan, N. D. Browning and B. C. Gates, “A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy”, J. Catal., 269(2), 318-328 (2010).
    137. Vargas Garcia, J. R. and T. Goto, “Chemical Vapor Deposition of Iridium, Platinum, Rhodium and Palladium”, Mater. Trans., 44(9), 1717-1728 (2003).
    138. Wang, H., K. Cai, J. Liu, X. Zhang, Y. Li, K. Cheng, J. Liu, C. Li, F. Ding and Y. Song, “Synthesis of Nanosphere TiO2 with Flower-like Micro-composition and its Application for the Selective Catalytic Reduction of NO with NH3 at Low temperature”, RSC Adv., 6(87), 84294-84308 (2016).
    139. Wang, J. G., C. J. Liu, Y. P. Zhang and B. Eliasson, “A DFT Study of Synthesis of Acetic Acid from Methane and Carbon Dioxide”, Chem. Phys. Lett., 368(3-4), 313-318 (2003).
    140. Wang, S. B., G. Q. M. Lu and G. J. Millar, “Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-supported Catalysts: State of the Art”, Energy Fuels, 10(4), 896-904 (1996).
    141. Wang, C. C., S. S. Siao and J. C. Jiang, “C-H Bond Activation of Methane via σ-d interaction on the IrO2(110) Surface: Density Functional Theory Study”, J. Phys. Chem. C, 116(10), 6367-6370 (2012).
    142. Wang, F., B. Qi, G. Wang and L. Li, “Methane Steam Reforming: Kinetics and Modeling over Coating Catalyst in Micro-channel Reactor”, Int. J. Hydrog. Energy, 38(14), 5693-5704 (2013).
    143. Wang, L., L. Tao, M. Xie, G. Xu, J. Huang and Y. Xu, “Dehydrogenation and Aromatization of Methane under Non-oxidizing Conditions”, Catal. Lett., 21(1-2), 35-41 (1993).
    144. Wang, T., M. D. Porosoff and J. G. Chen, “Effects of Oxide Supports on the Water-gas Shift Reaction over PtNi Bimetallic Catalysts: Activity and Methanation Inhibition”, Catal. Today, 233(Supplement C), 61-69 (2014).
    145. Wang, Y., C. Feng, M. Zhang, J. Yang and Z. Zhang, “Enhanced Visible Light Photocatalytic Activity of N-doped TiO2 in Relation to Single-electron-trapped Oxygen Vacancy and Doped-nitrogen”, Appl. Catal. B-Environ., 100(1-2), 84-90 (2010).
    146. Watanabe, M., H. Yamashita, X. Chen, J. Yamanaka, M. Kotobuki, H. Suzuki and H. Uchida, “Nano-sized Ni Particles on Hollow Alumina Ball: Catalysts for Hydrogen Production”, Appl. Catal. B-Environ., 71(3), 237-245 (2007).
    147. Weaver, J. F., “Surface Chemistry of Late Transition Metal Oxides”, Chem. Rev., 113(6), 4164-4215 (2013).
    148. Weaver, J. F., C. Hakanoglu, A. Antony and A. Asthagiri, “Alkane Activation on Crystalline Metal Oxide Surfaces”, Chem. Soc. Rev., 43(22), 7536-7547 (2014).
    149. Wei, J. and E. Iglesia, “Structural and Mechanistic Requirements for Methane Activation and Chemical Conversion on Supported Iridium Clusters”, Angew. Chem.-Int. Edit., 43(28), 3685-3688 (2004).
    150. White, A. and H. P. Dayton, “Studies on Production of Acetylene from Methane I-Cracking”, Ind. Eng. Chem. Res., 22(1), 20-25 (1930).
    151. Wilcox, E. M., G. W. Roberts and J. J. Spivey, “Direct Catalytic Formation of Acetic Acid from CO2 and Methane”, Catal. Today, 88(1-2), 83-90 (2003).
    152. Wisniewski, M., A. Boréave and P Gélin, “Catalytic CO2 Reforming of Methane over Ir/Ce0.9Gd0.1O2−x”, Catal. Commun., 6(9), 596-600 (2005).
    153. Wu, J. F., S. M. Yu, W. D. Wang, Y. X. Fan, S. Bai, C. W. Zhang, Q. Gao, J. Huang and W. Wang, “Mechanistic Insight into the Formation of Acetic Acid from the Direct Conversion of Methane and Carbon Dioxide on Zinc-modified H-ZSM-5 Zeolite”, J. Am. Chem. Soc., 135(36), 13567-13573 (2013).
    154. Wu, P., X. Li, S. Ji, B. Lang, F. Habimana and C. Li, “Steam Reforming of Methane to Hydrogen over Ni-based Metal Monolith Catalysts”, Catal. Today, 146(1), 82-86 (2009).
    155. Xu, J., R. D. Armstrong, G. Shaw, N. F. Dummer, S. J. Freakley, S. H. Taylor and G. J. Hutchings, “Continuous Selective Oxidation of Methane to Methanol over Cu- and Fe-modified ZSM-5 Catalysts in a Flow Reactor”, Catal. Today, 270, 93-100 (2016).
    156. Xu, Y., X. Bao and L. Lin, “Direct Conversion of Methane under Nonoxidative Conditions”, J. Catal., 216(1-2), 386-395 (2003).
    157. Yang, M., S. Li, Y. Wang, J. A. Herron, Y. Xu, L. F. Allard, S. Lee, J. Huang, M. Mavrikakis and M. Flytzani-Stephanopoulos, “Catalytically Active Au-O(OH) Species Stabilized by Alkali Ions on Zeolites and Mesoporous Oxides”, Science, 346(6216), 1498-1501 (2014).
    158. Yeung, C. M. Y., K. M. K. Yu, Q. J. Fu, D. Thompsett, M. I. Petch and S. C. Tsang, “Engineering Pt in Ceria for a Maximum Metal−Support Interaction in Catalysis”, J. Am. Chem. Soc., 127(51), 18010-18011 (2005).
    159. Yuan, S., L. Meng and J. Wang, “Greatly Improved Methane Dehydrogenation via Ni Adsorbed Cu(100) Surface”, J. Phys. Chem. C, 117(28), 14796-14803 (2013).
    160. Zecchina, A., M. Rivallan, G. Berlier, C. Lamberti and G. Ricchiardi, “Structure and Nuclearity of Active sites in Fe-zeolites: Comparison with Iron sites in Enzymes and Homogeneous Catalysts”, Phys. Chem. Chem. Phys., 9(27), 3483-3499 (2007).
    161. Zhang, J., T. Zhang, X. Zhang, W. Liu, H. Liu, J. Qiu and K. L. Yeung, “New Synthesis Strategies for Ni/Al2O3-Sil-1 Core–shell Catalysts for Steam Reforming of Methane”, Catal. Today, 236, Part A, 34-40 (2014).
    162. Zhang, Y., W. Wang, Z. Wang, X. Zhou, Z. Wang and C. -J. Liu, “Steam Reforming of Methane over Ni/SiO2 Catalyst with Enhanced Coke Resistance at Low steam to Methane ratio”, Catal. Today, 256(Part 1), 130-136 (2015).
    163. Zhang, Z. L. and X. E. Verykios, “Carbon Dioxide Reforming of Methane to Synthesis Gas over Supported Ni Catalysts”, Catal. Today, 21(2-3), 589-595 (1994).
    164. Zhang, Z. L., V. A. Tsipouriari, A. M. Efstathiou and X. E. Verykios, “Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: I. Effects of Support and Metal Crystallite Size on Reaction Activity and Deactivation Characteristics”, J. Catal., 158(1), 51-63 (1996).
    165. Zhou, L., Y. Guo, H. Kameyama, and J. M. Basset, “An Anodic Alumina Supported Ni–Pt Bimetallic Plate-type Catalysts for Multi-reforming of Methane, Kerosene and Ethanol”, Int. J. Hydrog. Energy, 39(14), 7291-7305 (2014).
    166. Zhou, L., Y. Guo, Q. Zhang, M. Yagi, J. Hatakeyama, H. Li, J. Chen, M. Sakurai and H. Kameyama, “A Novel Catalyst with Plate-type Anodic Alumina Supports, Ni/NiAl2O4/γ-Al2O3/alloy, for Steam Reforming of Methane”, Appl. Catal. A-Gen., 347(2), 200-207 (2008).
    167. Zhu, Q., S. L. Wegener, C. Xie, O. Uche, M. Neurock and T. J. Marks, “Sulfur as a Selective 'Soft' Oxidant for Catalytic Methane Conversion Probed by Experiment and Theory”, Nat. Chem., 5(2), 104-109 (2013).
    168. Zuo, Z., P. J. Ramírez, S. D. Senanayake, P. Liu and J. A. Rodriguez, “Low-Temperature Conversion of Methane to Methanol on CeOx/Cu2O Catalysts: Water Controlled Activation of the C-H Bond”, J. Am. Chem. Soc., 138(42), 13810-13813 (2016).

    無法下載圖示 全文公開日期 2023/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE