簡易檢索 / 詳目顯示

研究生: 劉靖妤
Ching-Yu Liu
論文名稱: 組裝人工合成之含胺基團的雙鐵雙硫化合物於三維碳電極之催化產氫應用
Three-Dimensional Carbon Electrodes Loaded with Synthetic [2Fe2S] Complexes Containing Amine Groups for Hydrogen Evolution
指導教授: 林昇佃
Shawn-Dian Lin
江明錫
Ming-Hsi Chiang
口試委員: 林昇佃
Shawn-Dian Lin
江明錫
Ming-Hsi Chiang
許益瑞
Yi-Ruei Syu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 242
中文關鍵詞: 鐵-鐵氫化酵素電催化產氫
外文關鍵詞: [FeFe] hydrogenase, Electrocatalysts, Hydrogen production
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是參照我們實驗室在2018年發表於Chemelectrochem中製備電極的方法來進行電化學產氫實驗,利用介面活性劑didodecyldimethylammonium bromide (DDAB) 將合成的催化劑以脂質體 (liposome) 的結構包覆住,並使用滴落塗佈 (drop coating) 的方式將催化劑固定在電極表面,使不水溶之催化劑能在水中進行異相催化。本研究設計合成一系列含有不同胺基取代基之雙鐵雙硫化合物,[μ,κ2-bdt-R)(μ-PPh2)Fe2(CO)5] (bdt = 1,2-benzenedithiolate,R = (CH2)2N(CH3)2 (1),R = (CH2)2N(CH2CH3)2 (2)及[{μ-bdt-3,6-(OC2H4N(CH2CH3)2)2}Fe2(CO)6] (3) 和[{μ-bdt-3-OH-6-(OC2H4N(CH2CH3)2)}Fe2(CO)6] (4),此含氮的結構特徵具有孤對電子,期望這個模型能在催化過程中更有效地吸引質子,並進一步將質子還原成氫氣,進而提升化合物產氫的結果。由定電位電解法可得知含有胺基取代基之化合物14包覆DDAB/CB於pH = 7的磷酸鹽緩衝溶液中電催化,產氫量大幅增加,其催化一小時產氫轉化數 (turnover number, TON) 分別可達到490、348、525與280,與我們實驗室先前發表的化合物 [μ,κ2-bdt-Me)(μ-PPh2)Fe2(CO)5] 之結果 (TON = 53) 有大幅提高。此外化合物14包覆於DDAB/CB在pH = 7磷酸鹽緩衝溶液下電解可進行長時間催化 (20小時),且催化劑沒有明顯失活,其TON分別可達到8471、5662、3223及1431。
    各化合物經由傅立葉轉換紅外線光譜儀 (FTIR)、核磁共振光譜儀 (NMR)、紫外光可見光光譜儀 (UV-Vis)、質譜分析儀 (MS) 及元素分析 (EA) 進行鑑定。此外,化合物1、3及化合物4的分子結構,經由X-ray單晶繞射儀解析來確定。實驗中也使用掃描式電子顯微鏡 (SEM)、能量色散X-射線光譜儀 (EDX)、衰減全反射傅立葉轉換紅外線光譜儀 (ATR-FTIR) 與動態光散射粒徑分析儀 (DLS) 來進行脂質體催化劑材料分析。接著結合定電位電解法,在pH = 7的水溶液下進行電催化產氫,並使用氣相層析-熱傳導偵測器 (GC-TCD) 定性且定量來驗證反應中氫氣的生成。


    In this study, I conduct the electrochemical hydrogen production research based on the method published by Chiang et al. in Chemelectrochem in 2018. The catalysts were immobilized by didodecyldimethylammonium bromide (DDAB), which shows liposome structures in aqueous media and fixed on the carbon electrode surface by drop coating. In this study, a series of Fe2S2 complexes bearing the bdt ligands (bdt = 1,2-benzenedithiolate) with different containing amine groups substituents, including [μ,κ2-bdt-R)(μ-PPh2)Fe2(CO)5] (R = (CH2)2N(CH3)2 (1), R = (CH2)2N(CH2CH3)2 (2), [{μ-bdt-3,6-(OC2H4N(CH2CH3)2)2}Fe2(CO)6] (3) and [{μ-bdt-3-OH-6-(OC2H4N
    (CH2CH3)2)}Fe2(CO)6] (4) are synthesized. The amine containing groups can use the lone pairs to attract protons during the catalytic process and then facilitates hydrogen formation. By controlled potential electrolysis, the catalytic performance of the catalyst M@DDAB/CB (M = 14) in neutral phosphate buffer solution is increased. Turnover number of 490, 348, 525 and 280, respectively, in one hour is achieved, which is 9-fold and 6.5-fold of that of the complex [μ,κ2-bdt-Me)(μ-PPh2)Fe2(CO)5] without amine substituents, previously reported in our group. Furthermore, the catalyst M@DDAB/CB (M = 14) are capable of electrolysis hydrogen evolution for 20 hrs, the observed TON reached 8471, 5662, 3223 and 1431 toward, respectively.
    The complexes were synthesized and characterized by fourier transform infrared spectrometer (FT-IR), nuclear magnetic resonance spectrometer (NMR), ultraviolet visible spectrophotometer (UV-vis) and mass spectrometer (MS) as well as elemental analyses. Molecular structures of the complexes 1, 3 and 4 were analyzed by X-ray single crystal crystallography. In addition, the catalyst loaded liposome materials were analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectrometer (ATR-IR) and dynamic light scattering (DLS). The formation of hydrogen during the reaction was verified qualitatively and quantitatively by gas chromatography thermal conductivity detector (GC-TCD).

    謝誌…………………………………………………………………………………………………………………………………………………………………………………………… i 摘要…………………………………………………………………………………………………………………………………………………………………………………………… ii Abstract………………………………………………………………………………………………………………………………………………………………………………… iii 第一章 緒論…………………………………………………………………………………………………………………………………………………………………………… 1 1.1 前言…………………………………………………………………………………………………………………………………………………………………………………… 1 1.2 氫化酵素(Hydrogenase)………………………………………………………………………………………………………………………………………… 3 1.2.1 鐵-鐵氫化酵素 ([FeFe] hydrogenase)………………………………………………………………………………………………… 4 1.3 [鐵-鐵]氫化酵素仿生化合物 ([FeFe] hydrogenase models)……………………………………………………… 5 1.4 修飾電極於水相進行產氫………………………………………………………………………………………………………………………………………… 6 1.5 以脂質體或膠束修飾電極於水相產氫之文獻回顧………………………………………………………………………………………… 7 1.6 研究動機…………………………………………………………………………………………………………………………………………………………………………… 12 第二章 實驗部分……………………………………………………………………………………………………………………………………………………………………… 14 2.1 實驗流程…………………………………………………………………………………………………………………………………………………………………………… 14 2.2 實驗藥品與溶劑……………………………………………………………………………………………………………………………………………………………… 14 2.3 實驗儀器與設備……………………………………………………………………………………………………………………………………………………………… 18 2.4 化合物的合成與鑑定…………………………………………………………………………………………………………………………………………………… 21 2.4.1 合成 [(μ,κ2-bdt-(CH2)2N(CH3)2)(μ-PPh2)Fe2(CO)5] (1)…………………………………………………… 23 2.4.2 合成 [(μ,κ2-bdt-(CH2)2N(CH2CH3)2)(μ-PPh2)Fe2(CO)5] (2)…………………………………………… 24 2.4.3 合成 [{μ-bdt-3,6-(OC2H4N(CH2CH3)2)2}Fe2(CO)6] (3)………………………………………………………… 26 2.4.4 合成 [{μ-bdt-3,6-(OC2H4NH(CH2CH3)2)2}Fe2(CO)6][BF4]2 ([3(NH)2][BF4]2)…… 27 2.4.5 合成 [{μ-bdt-3-OH-6-(OC2H4N(CH2CH3)2)}Fe2(CO)6] (4)…………………………………………………… 28 2.5 電化學分析實驗……………………………………………………………………………………………………………………………………………………………… 30 2.5.1 循環伏安法 (Cyclic voltammetry)…………………………………………………………………………………………………………… 30 2.5.2 定電位電解法 (Controlled potential electrolysis)……………………………………………………………… 30 2.5.3 電化學名詞介紹………………………………………………………………………………………………………………………………………………………… 32 2.5.3.1 過電位 (Overpotential)……………………………………………………………………………………………………………………………… 32 2.5.3.2 法拉第效率 (Faradic efficiency)……………………………………………………………………………………………………… 33 2.5.3.3 轉換數 (Turnover number) 及轉化率 (Turnover frequency)………………………………………… 33 2.6 產氫應用…………………………………………………………………………………………………………………………………………………………………………… 34 2.6.1 電極製備……………………………………………………………………………………………………………………………………………………………………… 34 第三章 結果與討論………………………………………………………………………………………………………………………………………………………………… 35 3.1 化合物 [(μ,κ2-bdt-(CH2)2N(CH3)2)(μ-PPh2)Fe2(CO)5] (1)…………………………………………………… 35 3.1.1 化合物結構與光譜分析………………………………………………………………………………………………………………………………………… 35 3.1.2 化合物1之質子化反應………………………………………………………………………………………………………………………………………… 38 3.1.2.1 化合物1與氟硼酸反應…………………………………………………………………………………………………………………………………… 38 3.1.2.2 化合物1與三氟乙酸反應………………………………………………………………………………………………………………………………… 40 3.1.3 電化學分析………………………………………………………………………………………………………………………………………………………………… 42 3.1.4 勻相加酸之電催化產氫機制探討…………………………………………………………………………………………………………………… 44 3.2 化合物 [(μ,κ2-bdt-(CH2)2N(CH2CH3)2)(μ-PPh2)Fe2(CO)5] (2)……………………………………… 51 3.2.1 化合物結構與光譜分析……………………………………………………………………………………………………………………………………… 51 3.2.2 化合物2之質子化反應………………………………………………………………………………………………………………………………………… 53 3.2.2.1 化合物2與氟硼酸反應…………………………………………………………………………………………………………………………………… 53 3.2.2.2 化合物2與三氟乙酸反應………………………………………………………………………………………………………………………………… 55 3.2.3 電化學分析………………………………………………………………………………………………………………………………………………………………… 57 3.2.4 勻相加酸之電催化產氫機制探討……………………………………………………………………………………………………………………… 58 3.3 化合物 [{μ-bdt-3,6-(OC2H4N(CH2CH3)2)2}Fe2(CO)6] (3)………………………………………………………… 64 3.3.1 化合物結構與光譜分析………………………………………………………………………………………………………………………………………… 64 3.3.2 化合物3與氟硼酸之質子化反應………………………………………………………………………………………………………………………… 67 3.3.2.1化合物結構與光譜分析……………………………………………………………………………………………………………………………………… 67 3.3.3 電化學分析………………………………………………………………………………………………………………………………………………………………… 70 3.3.4 勻相加酸之電催化產氫機制探討……………………………………………………………………………………………………………………… 72 3.4 化合物 [{μ-bdt-3-OH-6-(OC2H4N(CH2CH3)2)}Fe2(CO)6] (4)…………………………………………………… 76 3.4.1化合物結構與光譜分析…………………………………………………………………………………………………………………………………………… 76 3.4.2 電化學分析………………………………………………………………………………………………………………………………………………………………… 79 3.4.3 勻相加酸之電催化產氫機制探討……………………………………………………………………………………………………………………… 80 3.5 電極材料表面組成分析……………………………………………………………………………………………………………………………………………… 84 3.6 電極材料粒子粒徑分析……………………………………………………………………………………………………………………………………………… 90 3.7 電化學催化產氫實驗……………………………………………………………………………………………………………………………………………………… 91 3.7.1 於pH = 7硫酸鈉水溶液下電催化產氫………………………………………………………………………………………………………………… 91 3.7.2 於pH = 7磷酸鹽緩衝溶液下電催化產氫…………………………………………………………………………………………………………… 100 3.8 與類似系統於pH = 7水溶液下進行電催化之產氫效果比較………………………………………………………………………… 109 第四章 結論…………………………………………………………………………………………………………………………………………………………………………………… 114 參考文獻…………………………………………………………………………………………………………………………………………………………………………………………… 117 附錄……………………………………………………………………………………………………………………………………………………………………………………………………… A1

    1. Zhu, Q.; Qu, Y.; Liu, D.; Ng, K. W.; Pan, H., ACS Appl. Nano Mater. 2020, 3, 6270−6296.
    2. Kumar, A.; Daw, P.; Milstein, D., Chem. Rev. 2022, 122, 385–441.
    3. Ji, M.; Wang, J., Int. J. Hydrogen Energy 2021, 46, 38612-38635.
    4. Shiva Kumar, S.; Himabindu, V., Mater. Sci. Technol. 2019, 2, 442-454.
    5. Vidas, L.; Castro, R., Appl. Sci. 2021, 11, 11363.
    6. Zhang, B.; Zhang, S.-X.; Yao, R.; Wu, Y.-H.; Qiu, J.-S., J. Electron. Sci. Technol. 2021, 19, 100080.
    7. David, M., Ocampo-Martínez, C., Sánchez-Peña, R., J. Energy Storage 2019, 23, 392–403.
    8. Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V., Coord. Chem. Rev. 2014, 270, 127-150.
    9. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E., Chem. Rev. 2014, 114, 4081-4148.
    10. Kleinhaus, J. T.; Wittkamp, F.; Yadav, S.; Siegmund, D.; Apfel, U. P., Chem. Soc. Rev. 2021, 50, 1668-1784.
    11. Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C., Science 1998, 282, 1853-1858.
    12. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontencilla-Camps, J. C., Structure 1999, 7, 13-23.
    13. Li, C. S.; Li, F.; Yuan, Q. G., Dalton Trans. 2019, 48, 1443–1453.
    14. Chen, W.; Li, S.; Li, X.; Zhang, C.; Hu, X.; Zhu, F.; Shen, G.; Feng, F., Chem. Sci. 2019, 10, 2179-2185.
    15. Trautwein, R.; Almazahreh, L. R.; Görls, H.; Weigand, W., Dalton Trans. 2015, 44, 18780-18794.
    16. Wang, Z.; Liu, J.-H.; He, C.-J.; Jiang, S.; Åkermark, B.; Sun, L.-C., J. Organomet. Chem. 2007, 692, 5501-5507.
    17. Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J., J. Electroanal. Chem. 2006, 595, 47-52.
    18. Zaffaroni, R.; Detz, R. J.; van der Vlugt, J. I.; Reek, J. N. H., ChemSusChem 2018, 11, 209-218.
    19. Imahori, H.; Hosomizu, K.; Mori, Y.; Sato, T.; Ahn, T. K.; Kim, S. K.; Kim, D.; Nishimura, Y.; Yamazaki, L.; Ishii, H.; Hotta, H.; Matano, Y., J. Phys. Chem. B 2004, 108, 5018-5025.
    20. Liu, H.; Trautwein, R.; Schrçter, B.; Ignaszak, A.; Weigand, W.; Hoeppener, S.; Schubert, U. S., Langmuir 2015, 31, 11748–11753.
    21. Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S., Front. Pharmacol. 2015, 6, 286.
    22. Li, Z.; Fan, Q.; Yin, Y., Chem. Rev. 2022, 122, 4976-5067.
    23. Robson, A.-L.; Dastoor, P. C.; Flynn, J.; Palmer, W.; Martin, A.; Smith, D. W.; Woldu, A.; Hua, S., Front. Pharmacol. 2018, 9, 80.
    24. Varela-Moreira, A.; Shi, Y.; Fens, M. H. A. M.; Lammers, T.; Hennink, W. E.; Schiffelers, R. M., Mater. Chem. Front. 2017, 1, 1485-1501.
    25. Wang, J.; Li, S.; Han, Y.; Guan, J.; Chung, S.; Wang, C.; Li, D., Front. Pharmacol. 2018, 9, 202.
    26. Wang, H.-Y.; Wang, W.-G.; Si, G.; Wang, F.; Tung, C.-H.; Wu, L.-Z., Langmuir 2010, 26, 9766-9771.
    27. Wang, F.; Wen, M.; Feng, K.; Liang, W.-J.; Li, X.-B.; Chen, B.; Tung, C.-H.; Wu, L.-Z., Chem. Commun. 2016, 52, 457-460.
    28. Chen, W.; Li, S.; Li, X.; Zhang, C.; Hu, X.; Zhu, F.; Shen, G.; Feng, F., Chem. Sci. 2019, 10, 2179-2185.
    29. Chung, M. W.; Liu, Y. C.; Yen, T. H.; Chiang, M. H., Chemelectrochem 2018, 5, 20-24.
    30. Kusumoto, K.; Ishikawa, T., J. Control. Release 2010, 147, 246–252.
    31. Stone, M.T.; Kozlov, M., Langmuir 2014, 30, 8046–8055.
    32. Cabeza, J. A.; Martínez-García, M. A.; Riera, V., Ardura, D.; García-Granda, S., Organometallics 1998, 17, 1471-1477.
    33. Adams, R. D.; Miao, S., Inorg. Chem. 2004, 43, 8414-8426.
    34. Nutting, J. E.; Gerken, J. B.; Stamoulis, A. G.; Bruns, D. L.; Stahl, S.S., J. Org. Chem. 2021, 86, 15875-15885.
    35. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K.-Y., Chem. Rev. 2020, 120, 851-918.
    36. Liu, Y.-C.; Chu, K.-T.; Jhang, R.-L.; Lee, G.-H.; Chiang, M.-H. Chem Commun. 2013, 49, 4743-4745.
    37. Eckert, F.; Leito, I.; Kaljurand, I.; Kütt, A.; Klamt, A.; Diedenhofen, M., J. Comput. Chem. 2009, 30, 799-810.
    38. Chen, J.; Vannucci, A. K.; Mebi, C. A.; Okumura, N.; Borowski, S. C.; Swenson, M., Lockett, L. T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L., Organometallics 2010, 29, 5330-5340.
    39. Yang, X.; DeLaney, C. R.; Burns, K. T.; Elrod, L. C.; Mo, W.; Naumann, H.; Bhuvanesh, N.; Hall, M. B.; Darensbourg, M. Y., Inorg. Chem. 2021, 60, 7051-7061.
    40. Gloaguen, F., Inorg. Chem. 2016, 55, 390-398.
    41. Chen, L.; Wang, M.; Han, K.; Zhang, P. L.; Gloaguen, F.; Sun, L. C., Energy Environ. Sci. 2014, 7, 329-334.
    42. Das, A.; Han, Z. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R., ACS Catal. 2015, 5, 1397-1406.
    43. Chiou, T. W.; Lu, T. T.; Wu, Y. H.; Yu, Y. J.; Chu, L. K.; Liaw, W. F., Angew. Chem. Int. Ed. 2015, 54, 14824-14829.
    44. Cao, J. P.; Fang, T.; Fu, L. Z.; Zhou, L. L.; Zhan, S. Z., Int. J. Hydrog. Energy 2014, 39, 13972-13978.
    45. Zhang, P.; Wang, M.; Yang, Y.; Zheng, D.; Han, K.; Sun, L., Chem. Commun. 2014, 50, 14153-14156.
    46. Zhang, P. L.; Wang, M.; Gloaguen, F.; Chen, L.; Quentel, F.; Sun, L. C., Chem. Commun. 2013, 49, 9455-9457.
    47. Collin, J. P.; Jouaiti, A. ; Sauvage, J. P., Inorg. Chem. 1988, 27, 1986-1990.
    48. Kleingardner, J. G.; Kandemir, B.; Bren, K. L., J. Am. Chem. Soc. 2014, 136, 4-7.
    49. Beyene, B. B.; Mane, S. B.; Hung, C. H., Chem. Commun. 2015, 51, 15067-15070.
    50. Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, R.; Chang, C. J., J. Am. Chem. Soc. 2011, 133, 9212-9215.
    51. Karunadasa, H. I.; Chang, C. J.; Long, J. R., Nature 2010, 464, 1329-1333.
    52. Singh, W. M.; Baine, T.; Kudo, S.; Tian, S. L.; Ma, X. A. N.; Zhou, H. Y.; DeYonker, N. J.; Pham, T. C.; Bollinger, J. C.; Baker, D. L.; Yan, B.; Webster, C. E.; Zhao, X., Angew. Chem., Int. Ed. 2012, 51, 5941-5944.; Angew. Chem. 2012, 124, 6043-6046.
    53. Dolui, D.; Khandelwal, S.; Shaik, A.; Gaat, D.; Thiruvenkatam, V.; Dutta, A., ACS Catal. 2019, 9, 10115–10125.

    無法下載圖示 全文公開日期 2027/08/30 (校內網路)
    全文公開日期 2027/08/30 (校外網路)
    全文公開日期 2027/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE