簡易檢索 / 詳目顯示

研究生: 蔡沅昇
Yuan-Sheng Tsai
論文名稱: 單邊製程規格線性剖面資料的供應商選擇
Supplier Selection for Linear Profiles with One-Sided Specifications
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 林希偉
Shi-Woei Lin
陳欽雨
Chin-Yeu Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 57
中文關鍵詞: 供應商選擇製程選擇線性剖面單邊製程規格製程良率
外文關鍵詞: Supplier selection, Process selection, Linear profiles, One-sided specifications, Process yield
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討如何在兩家供應商中,選擇具有較高製程能力的供應商,其產品製程具有線性剖面資料特性,並且是以單邊製程規格為製程能力標準。我們提出基於比率檢定統計量的方法,在兩種情況下利用假設檢定,比較兩間供應商的製程能力,計算出檢定所需的臨界值,作為供應商選擇決策的依據,並且提供滿足指定的檢定力和信心水準下所需的最小樣本數,這些資訊能有效地幫助決策者來處理此類型的供應商選擇問題。此外,再藉由鋁電解電容製程案例說明如何實際運用我們提供的方法。


In this paper, we consider the supplier selection problem for linear profiles processes with one-sided specifications. An exact approach based on the ratio test statistic to tackle the supplier selection problem is proposed. Testing hypotheses with two cases for comparing two processes are considered. Critical values of the tests are calculated to determine the selection decisions. The number of profiles required for a designated selection power and confidence level is also provided. The results provide useful information to practitioners. A real application on AEC manufacturing processes is presented to illustrate the application of our proposed method.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究範圍與限制 2 1.4 研究流程 2 第二章 文獻探討 5 2.1 線性剖面資料 5 2.2 製程能力指標 6 2.3 單邊製程規格的供應商選擇方法 8 2.3.1 概似比近似法 8 2.3.2 比率式選擇法 9 2.3.3 減法式選擇法 10 第三章 研究方法 16 3.1 單邊型線性剖面資料的製程能力指標C_puA 及C_plA 16 3.1.1 單邊型線性剖面資料之點估計 16 3.1.2 單邊型線性剖面資料之區間估計 18 3.1.3 製程能力指標C_puA 及C_plA之簡易型式 21 3.2 比率檢定統計量R 24 3.3 供應商選擇流程 26 3.3.1 Case I:選擇較佳製程 26 3.3.2 Case II:製程能力的差異程度 27 3.3.3所需樣本數 32 第四章 案例分析 35 第五章 結論與建議 39 文獻參考 40 附錄 43 I.服從漸近分配驗證模擬程式碼 43 II.計算Case1、Case2臨界值C_0之程式碼 46 III.所需最小樣本數程式碼 48 IV.簡易型式之相關推導 51 V.檢定統計量R機率分配推導 53

[1] Amiri A., C. Zou and M.H. Doroudyan, “Monitoring correlated profile and multivariate quality characteristics,” Quality and Reliability Engineering International, 30, 133-142 (2014).
[2] Bothe, D.R., “A capability index for multiple process streams,” Quality Engineering, 11, 613-618 (1999).
[3] Chou, Y.M., “Selecting a better supplier by testing process capability indices,” Quality Engineering, 6, 427-438 (1994).
[4] Chuang, Y.S., An Effective and Powerful Test for One-sided Manufacturing Characteristic in Supplier Selection Problem, Master thesis, National Chiao Tung University, Taiwan (2009).
[5] Ebadi, M. and H. Shahriari, “A process capability index for simple linear profile,” International Journal of Advanced Manufacturing Technology, 64, 857-865 (2013).
[6] Kane, V.E., “Process capability indices,” Journal of Quality Technology, 18, 41-52 (1986).
[7] Kang, L. and S.L. Albin, “On-line monitoring when the process yield a linear profile,” Journal of Quality Technology, 32, 418-426 (2000).
[8] Kunter, M.H., C.J. Nachtsheim, and W. Li, Applied Linear Statistical Models, McGraw-Hill, Boston, (2005).
[9] Lin, C.J. and W.L. Pearn, “Process selection for higher production yield based on capability index Spk,” Quality and Reliability Engineering International, 26, 247-258 (2010).
[10] Nairy, K.S. and K.A. Rao, “Test of coefficients of variation of normal populations,” Communications in Statistics Simulation and Computation, 32, 641-661 (2003).
[11] Norma, F.H., B. Abdelaziz and S.G. Esma, “A wald test for comparing multiple capability indices,” Journal of Quality Technology, 37, 304-307 (2005).
[12] Pearn, W.L. and C.S. Chang, “An implementation of the precision index for contaminated processes,” Quality Engineering, 11, 101-110 (1998).
[13] Pearn, W.L. and M.H. Shu, “Lower confidence bounds with sample size information for Cpm with application to production yield assurance,” International Journal of Production Research, 41, 3581-3599 (2003).
[14] Pearn, W.L. and S. Kotz, Encyclopedia and Handbook of Process Ability Indices, World Scientific, Singapore (2006).
[15] Pearn, W.L. and C.H. Wu, “Supplier selection critical decision values for processes with multiple independent,” Quality and Reliability Engineering International, 29, 899-909 (2012).
[16] Pearn, W.L. and C.H. Wu, “Supplier selection for multiple-characteristics processes with one-sided specifications,” Quality Technology and Quantitative Management, 10, 133-139 (2013).
[17] Pearn, W.L., G.H. Lin and K.S. Chen, “Distributional and inferential properties of the process accuracy and process precision indices,” Communications in Statistics: Theory and Methods, 27, 985-1000 (1998).
[18] Pearn, W.L., H.N. Hung and Y.C. Cheng, “Supplier selection for one-sided process with unequal sample sizes,” European Journal Operational Research, 195, 381-393 (2009).
[19] R Development Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, (2014).
[20] Wang, F.K., “Measuring the process yield for simple linear profiles with one-sided specification,” Quality and Reliability Engineering International, DOI: 10.1002/qre.1537 (2013).
[21] Wang, F.K. and Y.C. Guo, “Measuring process yield for nonlinear profiles,” Quality and Reliability Engineering International, DOI: 10.1002/qre.1554 (2013).
[22] Weber, C.A., J.R. Current and W.C. Benton, “Vendor selection criteria and methods,” European Journal of Operational Research, 50, 2-18 (1991).
[23] Wu, C.W. and W.L. Pearn, “Measuring manufacturing capability for couplers and wavelength division multiplexers,” International Journal Advanced Manufacturing Technology, 25, 533-541 (2005).
[24] Wu, C.W. and W.L. Pearn, “A variable sampling plan based on Cpmk for product acceptance determination with low PPM defectives,” European Journal of Operational Research, 184, 549-560 (2008).
[25] Wu, C.W., M.Y. Liao and T.T. Yang, “Efficient methods for comparing two process yields – strategies on supplier selection,” International Journal of Production Research, 51, 1587-1602 (2013).

無法下載圖示 全文公開日期 2016/06/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE