簡易檢索 / 詳目顯示

研究生: 張郁欣
Yu-Shin Chang
論文名稱: 二硒化鉬層狀半導體之二維電傳輸特性
Two-dimensional Electronic Transport in MoSe2 Layered Semiconductors
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
傅祖怡
Tsu-Yi Fu
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 97
中文關鍵詞: 二硒化鉬層狀半導體厚度相依電導率表面電子聚集
外文關鍵詞: MoSe2, Layered semiconductor, Thickness-dependent conductivity, Surface electron accumulation
相關次數: 點閱:312下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討以化學氣相傳輸法成長的層狀半導體二硒化鉬(MoSe2)之二維電傳輸特性。首先我們分別用拉曼光譜(Raman spectrum)和X光繞射(X-ray diffraction)量測,證實MoSe2晶體具有高品質的單晶特性。以機械剝離法和聚焦離子束技術,將MoSe2製作成具有原始表面(non-fresh surface)和新撕表面(fresh surface)之奈米薄片元件。發現奈米薄片之電導率與塊材相比高出兩個數量級,電導率皆與厚度成反比。由transfer length method (TLM)的模型分析,可定義奈米元件接觸電阻的影響,進一步發現電子傳輸行為並非遵循傳統三維的傳輸行為,而是二維的電傳輸特性。經由掃描穿隧顯微鏡(scanning tunneling microscopy)和角度解析光電子能譜(angle-resolved photoemission spectroscopy)分析晶體表面,證實了原始表面和新撕表面所存在異常高的導電性,是由於表面的電子聚集。另外新撕表面似乎存在結構的不均勻性,導致量測到兩種本質特性,而本質上就有電子聚集的機率較高。利用場效電晶體(field-effect transistor)量測,可發現新撕表面表現出較低的電子遷移率和較高的電子濃度,這可能是因為新撕表面存在較強的表面散射機制。最後透過變溫的FET量測,證實電子遷移率是由雜質散射所主導,進一步證實了表面存在相當高的缺陷與表面態密度。


We report on the two-dimensional (2D) electronic transport in layered semiconductor of molybdenum diselenide (MoSe2) grown by chemical vapor transport. The single-crystalline quality of MoSe2 was examined by the Raman scattering and X-ray diffraction (XRD) measurements. The two-terminal devices of MoSe2 nanosheets with pristine (non-fresh) and fresh surface were fabricated by the mechanical exfoliation and focused-ion beam (FIB) technique. A thickness-dependent electrical conductivity was observed in which the nanosheets exhibit nearly two orders of magnitude higher conductivity than the bulk counterparts. According to the transfer-length method (TLM) analysis, we observed that the MoSe2 nanostructures follow a 2D transport behavior rather than the conventional 3D mode. Presence of surface electron accumulation (SEA), which was confirmed by the scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), was found to be physical origin of the 2D electronic transport and relatively high conductive nature in MoSe2. The field-effect transistor (FET) measurement indicates that the nanosheets with the fresh surface exhibit lower mobility and higher electron concentration compared to those with the non-fresh surface. The temperature-dependent FET measurement indicates that the mobility is dominated by impurity scattering, further supports the statement of the presence of the SEA induced by the high-density surface states in MoSe2.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1二維奈米材料 1 1.2過渡金屬硫屬化合物 2 第二章 樣品介紹 3 2.1 晶體成長 3 2.2 MoSe2晶體結構與基本特性 4 第三章 實驗方法 6 3.1 二硫化鉬層狀半導體之形貌、結構特性檢測方法 6 3.2 二硫化鉬層狀半導體元件製作 21 3.3 元件之暗電導量測 26 第四章 結果與討論 32 4.1晶體形貌與結構分析 32 4.2 二硒化鉬層狀半導體元件 36 4.3二硒化鉬奈米結構暗電導 38 4.4奈米結構本質電導率量測 47 4.5 材料與電極間接觸電阻影響排除 51 4.6變溫電導率與活化能量測 55 4.7 由STM觀察表面電子聚集效應 60 4.8由ARPES證實表面電子聚集來源 65 4.9 金氧半場效應電晶體量測 71 第五章 結論 80 參考文獻 81

[1] M. Lundstrom, Applied physics. “Moore's law forever?” Science, Vol. 299, No.5604, pp. 210-211, 2003
[2] T.N. Theis, P.M. Solomon, “It’s Time to Reinvent the Transistor!” Science., Vol. 327 No. 5973, pp.1600-1601, 2010
[3] R. Chau, B. Doyle, S. Datta, J. Kavalieros, K. Zhang, “Integrated nanoelectronics for the future.” Nat Mater., Vol.6 No.11, pp.810-812, 2007
[4] H. Kawaura, T. Sakamoto, T. Baba, “Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors.” Appl. Phys. Lett., Vol.76, No. 3810, 2000
[5] A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals.” J. Phys. Chem., vol. 100, pp. 13226, 1996.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “ Electric Field Effect in Atomically Thin Carbon Films.”, Science, Vol. 306, pp.666-669, 2004
[7] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth,V. V. Khotkevich, S. V. Morozov, “Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America”, Vol. 102, pp. 10451-10453, 2005
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp.666-669, 2004
[9] W. S. Yun, W. S. Han, S. C. Hong, I. G. Kim, J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors”, Phys. Rev. B, Vol. 85, 2012
[10] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor”, Phys. Rev. Lett., Vol. 105, pp.136805, 2010
[11] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors”, Nat. Nanotechnol., Vol. 6, pp. 147-150, 2011
[12] B. Chamlagain, Q. Li, N. J. Ghimire, H. J. Chuang, M. M. Perera, H. Tu, Y. Xu, M. Pan, D. Xiao, J. Yan, D. Mandrus, Z. Zhou. “Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate”, ACS Nano., Vol.8 No.5, pp. 5079-5088, 2014
[13] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic,A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2”, Nat Nanotechnol. Vol.8 No.7, pp. 497-501, 2013
[14] S. Das, R. Gulotty, A.V. Sumant, A. Roelofs. “All two-dimensional, flexible, transparent, and thinnest thin film transistor”, Nano Lett., Vol.14 No. 5, pp. 2861-2866, 2014
[15] I. Mahboob, T. D. Veal, and C. F. McConville, “Intrinsic Electron Accumulation at Clean InN Surfaces”, Phys Rev Lett., Vol. 92, pp. 036804, 2004
[16] M. D. Siao, W. C. Shen, R. S. Chen, Z. W. Chang, M. C. Shih, Y. P. Chiu, C.-M. Cheng, “Two-dimensional electronic transport and surface electron accumulation in MoS2”, Nat Commun., Vol.9, pp.1442, 2018
[17] R. S. Chen, C. C.Tang, W.C. Shen, Y. S. Huang. “Thickness-dependent electrical conductivities and ohmic contacts in transition metal dichalcogenides multilayers”, Nanotechnology, Vol.25, No.41, pp.415706, 2014
[18] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.” Nat. Nanotechnol., Vol. 7, pp.699-712, 2012
[19] R. Bissessur, M. G. Kanatzidis, J. L. Schindler,
C. R. Kannewurf, “Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2” J. Chem. Soc., Chem. Commun.,pp. 1582–1585, 1993
[20] K. K. Kam, B. A. Parkinson, “Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides.” J. Phys. Chem., Vol.86, pp. 463–467, 1982
[21] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li,
J. C. Grossman, J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2”, Nano Lett., Vol.12, No.11, pp.5579-5580, 2012
[22] B. D. Cullity, S.R. Stock, “Elements of X-ray diffraction, Prentice Hall”, New Jersey , 2001
[23] A. A. Tseng, K. Chen, C.D. Chen, K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development”, IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149, 2003
[24] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, Vol. 1, pp. 924–939 , 2005
[25] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng., Vol. 14, pp. R15–R34, 2004
[26] F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy, Vol. 186, pages 84–87, 1997
[27] From Wikipedia, the free encyclopedia, http://en .wikipedia.org/
wiki/Scanning_tunneling_microscope
[28] P.K. Hansma, “Scanning tunneling microscopy.” Journal of applied physics, Vol.61, No.2 R1-R24, 1987
[29] Z. X. Shen, “Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors”, 2007
[30] A. Damascelli, “Probing the electronic structure of complex systems by state-of-art ARPES”, 2007
[31] Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett., Vol. 97, No.211102, 2010
[32] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder effects in focused-ionbeam-deposited Pt contacts on GaN nanowires”, Nano Lett., Vol. 5, pp. 2029-2033, 2005
[33] Donald A. Neamen, “Semiconductor Physics and Devices”, 2011
[34] S. Vishwanath, X. Liu, S. Rouvimov, P. CMende, A. Azcatl, S. McDonnell, R. M. Wallace, R. M. Feenstra, J. K. Furdyna,
D. Jena, H. G. Xing, “Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and grapheme”, 2D Mater. 2, 2015
[35] S. Y. Hu, C. H. Liang, K. K. Tiong, Y. C. Lee,Y. S. Huang, “Preparation and characterization of large niobium-doped MoSe2 single crystals”, J. Crystal Growth, Vol.285, pp. 408–414, 2005
[36] S. Y. Hu, C. H. Liang, K. K. Tiong, Y. S. Huang, “Effect of Re dopant on the electrical and optical properties of MoSe2 single crystals”, J. Alloys Compounds, Vol. 442, pp.249–251, 2007
[37] M. D. Siao, “Surface electron accumulation and electronic transport in MoS2 layer semiconductors”, NTUST Taiwan, 2017
[38] F. A. Filip, K. S. Thygesen, “Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides”, J. Phys. Chem. C, Vol.119, pp.13169-13183, 2015
[39] Y. C. Lee, J. L. Shen, K. W. Chen, W. Z. Lee, S. Y. Hu,
K. K. Tiong, Y. S. Huang, “Observation of persistent photoconductivity in layered semiconductors”, Journal of Applied Physics, Vol.99, 2006
[40] Y. Zhang, T.R. Chang, B. Zhou, Y. T. Cui, H. Yan, Z. Liu,
F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H. T. Jeng, S. K. Mo, Z. Hussain, A. Bansil, Z. X Shen, “Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2”, Nature Nanotechnol., Vol. 9, 2014
[41] M. M. Perera, M. W. Lin, H. J. Chuang, B. P. Chamlagain, C. Wang, X, Tan, M. M. C. Cheng, D. Tománek, Z. Zhou, “Improved carrier mobility in few layer MoS2 field effect transistors with ionic liquid gating”, ACS Nano, Vol. 7, pp. 4449‐4458, 2013

QR CODE