簡易檢索 / 詳目顯示

研究生: 李昱伸
Yu-Shen Lee
論文名稱: 鋰電池主動式平衡器研製
Development of Active Equalizer for Lithium-Ion Batteries
指導教授: 劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
口試委員: 鄧人豪
Teng Jen-Hao
邱煌仁
Huang-Jen Chiu
楊宗銘
Chung-Ming Young
劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 鋰電池平衡器雙向降升壓式轉換器變動責任週期法最佳責任週期法
外文關鍵詞: Equalizer, Bidirectional Synchronous Buck–boost Converter, Varied-duty-cycle Method, Optimal-duty-cycle Method
相關次數: 點閱:338下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製操作於不連續導通模式下之雙向降升壓式平衡器,使電
    池組中相鄰電池能量可雙向傳遞,進而解決電池電量不平衡問題,並
    提出兩種可縮短平衡時間之控制方法,分別為變動責任週期法及最佳
    責任週期法。
    若使用文獻中將雙向降升壓式轉換器之開關導通週期設為定值
    之控制方法,則於平衡過程平衡電流會隨著電量較高之電池電壓下降
    而隨之減少,進而導致平衡時間增加,因此本文提出變動責任週期法
    及最佳責任週期法改善平衡電流下降問題。其中變動責任週期法透過
    電池電壓計算所需開關責任週期大小,使平衡電流於平衡過程皆維持
    在目標電流大小,而最佳責任週期法則透過相鄰電池電壓計算出開關
    責任週期大小,使切換週期內可傳遞最多能量,進而提升平衡電流大
    小。透過三種初始電池電壓條件之平衡實驗可知,變動責任週期法相
    較固定責任週期法分別節省 10.3%、11.7%及 16%之平衡時間,而最
    佳責任週期法相較固定責任週期法分別節省 35.9%、36.6%及 37.3%
    之平衡時間。
    關鍵字:鋰電池平衡器、雙向降升壓式轉換器、變動責任週期法、最佳
    責任週期法


    In this thesis, an active equalizer circuit for series-connected lithium-
    ion batteries is proposed. The power stage utilized in this thesis is a synchronous buck–boost converter operating in discontinuous conduction mode. Using this topology, bidirectional energy transfers between any cell(s) to any cell(s) can be achieved. Then two control methods that can shorten the balance time are proposed, namely the varied-duty-cycle method and the optimal-duty-cycle method. For the traditional equalizing control strategy presented in the literature, the duty cycle of the synchronous buck–boost converter is kept constant during the whole balancing process. Hence, the balancing current will decrease as the voltage drops of the battery with more energy; this will correspondingly increase the balancing time. To deal with this problem, varied-duty-cycle method and optimal-duty-cycle method are proposed. The varied-duty-cycle method can adjust the duty cycle value according to the operating condition and thus keep the balancing current nearly constant. The optimal-duty-cycle method can calculate the duty cycle value according to the voltage of the adjacent battery and thus keep the
    transmission time of energy approaches the period time of synchronous buck–boost converter. Comparing with the traditional balancing control technique, the varied-duty-cycle method and optimal-duty-cycle method can improve the balancing time by 10.3%, 11.7%, 16% and 35.9%, 36.6%, 37.3% under three battery voltage conditions. Keyword : Equalizer, Bidirectional Synchronous Buck–boost Converter, Varied-duty-cycle Method, Optimal-duty-cycle Method

    摘要 I Abstract II 誌謝 III 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 論文大綱 3 第二章 二次電池與平衡電路介紹 4 2.1 電池相關名詞介紹 4 2.1.1 額定容量(Nominal Capacity) 4 2.1.2 C數(C rate) 4 2.1.3 電池剩餘容量(SOC,State-of-charge) 4 2.1.4 放電深度(DOD,Depth-of-discharge) 5 2.1.5 電池內阻(Internal Resistance) 5 2.1.6 自放電(Self-discharge) 5 2.1.7 電池週期(Battery Cycle) 5 2.1.8 電池健康狀態(SOH, State-of-health) 5 2.1.9 記憶效應 6 2.2 二次電池種類介紹 6 2.2.1 鉛酸電池 6 2.2.2 鎳鎘電池 6 2.2.3 鎳氫電池 6 2.2.4 鋰離子電池 7 2.3平衡電路種類介紹 7 2.3.1 電阻式平衡器 9 2.3.2 電容式平衡器 9 2.3.3 電感式平衡器 11 第三章 降升壓式轉換器介紹及元件設計 13 3.1 降升壓式轉換器架構 13 3.1.1 降升壓式轉換器動作分析 13 3.1.2 雙向降升壓式轉換器動作分析 17 3.2 雙向降升壓式平衡電路設計 19 3.2.1 電感設計 19 3.2.2 開關設計 21 第四章 平衡電路之系統架構 23 4.1鋰離子電池規格與參數量測 24 4.1.1 電池SOC與阻抗分析實驗 25 4.1.2 電池參數分析結果 29 4.2 平衡器週邊硬體電路介紹 32 4.2.1 開關驅動電路 32 4.2.2 差動電壓資料擷取模組 32 第五章 韌體架構與控制策略 33 5.1 平衡器韌體架構 33 5.1.1 控制器核心介紹 33 5.1.2 中斷 35 5.1.3 SCI通訊功能 35 5.1.2 PWM控制模組 36 5.2 平衡控制策略及程式流程介紹 37 第六章 模擬與實驗結果 47 6.1模擬結果與比較 47 6.1.1模擬參數設定 47 6.1.2模擬結果 48 6.2實驗結果與比較 53 6.2.1實驗量測波形(單組平衡器) 55 6.2.2實驗量測波形(三組平衡器) 60 6.2.3電池電壓平衡曲線 61 6.2.4電池平衡結果比較 65 6.2.5充放電情況下之平衡結果 66 第七章 結論與未來展望 68 7.1結論 68 7.2未來展望 69 參考文獻 70

    [1] 謝騄璘、蔡宜君、呂學隆,「全球電動車市場動向與48V微混系統鋰電池商機剖析」,工業技術研究院,2020年4月21日。
    [2] A. I. Stan, M. Swierczynski, D. I. Stroe, R. Teodorescu and S.J. Andreasen, “Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications—An Overview,” in Proceeding OPTIM, pp.713-720, May 2014.
    [3] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1343-1349, Oct. 2005.
    [4] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits and Systems Magazine, Vol. 8, No. 3, pp. 52-66, Aug. 2008.
    [5] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2258-2267, Jun. 2008.
    [6] P. T. Krein and R.S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” in Proceedings of the 24th Annual International Telecommunications Energy Conference (INTELEC), pp. 516-523, Sep./Oct. 2002.
    [7] S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and Life Test Result,” in Proceedings of the 22nd International Telecommunications Energy Conference, pp.439-446, Sep. 2000.
    [8] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Symposium on Industrial Electronics and Applications, Vol. 35, No. 1, pp. 28-35, Jan./Feb. 1999.
    [9] S. Hong, J. Jiang and X. Li, “A battery management system with two-stage equalization,” in 29th Chinese Control and Decision Conference, 2017.
    [10] H. Oman, “Making Batteries Last Longer,” IEEE Aerospace &Electrics Systems Magazine, Vol. 14, No. 9, pp. 19-21, 1999.
    [11] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, Vol. 226, pp. 272-288, Mar. 2013.
    [12] B. S. Sagar, B. P. Divakar, K. S. V. Prasad, “Series battery equalization using sequential difference algorithm,” Advances in Electronics, Computers and Communications (ICAECC), 2014 International Conference, pp.1-6, 2014.
    [13] T. A. Stuart, W. Zhu, “Modularized battery management for large lithium ion cells,” Journal of Power Sources, Vol.196, No.1, pp.458-464, 2011.
    [14] Y. Lee, S. Jeon and S. Bae, “Comparison on Cell Balancing Methods for Energy Storage Applications,” ResearchGate , vol.9, May. 2016.
    [15] W. Luo, L. Jie, W. Song and Z. Feng, “Study on passive balancing characteristics of serially connected lithium-ion battery string,” in 13th International Conference on Electronic Measurement & Instruments, 2017.
    [16] J. G. Lozano, E. R. Cadaval, M. I. M. Montero, M. A. G.Martinez, “A novel active battery equalization control with on-line unhealthy cell detection and cell change decision,” Journal of Power Sources, Vol.299, pp.356-370, 2015.
    [17] P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, pp. 3956-3962, Dec. 2010.
    [18] W. C. Lee and D. Drury, “Development of a Hardware-in-the-Loop Simulation System for Testing Cell Balancing Circuits,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5949-5959, Dec. 2013.
    [19] D. D. Quinn and T. T. Hartley, “Design of novel charge balancing networks in battery packs,” Journal of Power Sources, vol.240, pp.26-32, 2014.
    [20] M. Daowd, N. Omar, P. V. D. Bossche and J. V. Mierlo, “Passive and Active Battery Balancing Comparison Based on MATLAB Simulation” in Proceeding IEEE Vehicle Power Propul. Conference, pp.1-7, 2011.
    [21] Y. Ye and K. W. E. Cheng, “An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings,” Energies, vol.9, no.3, pp.1-15, Feb. 2016.
    [22] M. Y. Kim, C. H. Kim, J. H. Kim and G. W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 3989-3999, Aug. 2014.
    [23] D. H. Zhang, G. R. Zhu, S. J. He, S. Qiu, Y. Ma, Q. M. Wu and W. Chen, “Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point,” Energies, Vol. 8, No. 3, pp. 1830-1847, Mar. 2015.pp.4906-4913, 2015.

    [24] J. Xu, S. Li, C. Mi, Z. Chen, B. Cao, “SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count,” Energies,Vol.6, No.6, pp.2726-2740, 2013.
    [25] B. Dong, Y. Li, Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Transactions on Power Electronics, Vol.30, No.9, pp.4906-4913, 2015.
    [26] Y. S. Lee and G. T. Chen, “ZCS bi-directional DC-to-DC converter application in battery equalization for electric vehicles,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol.4, pp.2766-2772, 2004.
    [27] S. H. Park, T. S. Kim, J. S. Park, G. W. Moon and M. J. Yoon, “A new battery equalizer based on buck-boost topology,” IEEE 7th International Conference on Power Electronics, pp.962-965, 2007.
    [28] W. Ji, X. Lu, Y. Ji, Y. Tang, F. Ran and F. Z. Peng, “Low cost battery equalizer using buck-boost and series LC converter with synchronous phase-shift control” in 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, pp.1152-1157, 2013.
    [29] J. Yan, Z. Cheng, G. Xu, H. Qian, Y. Xu, “Fuzzy Control for Battery Equalization Based on State of Charge,” Vehicular Technology Conference Fall (VTC 2010-Fall), pp.1-7, 2010.
    [30] 孫清華編譯,「最新可充式電池技術大全」,全華科技圖書,民國九十二年九月。
    [31] 李世興編譯,「電池活用手冊」,全華科技圖書,民國八十五年一月。
    [32] 屠海令編譯,「先進電池:電化學電源導論」,冶金工業出版社,民國九十五年五月。
    [33] Y. Zheng, M. Ouyang, L. Lu, J. Li, X. Han and L. Xu, “On-line Equalization for Lithium-ion Battery Packs Based on Charging Cell Voltage:Part 1. Equalization Based on Remaining Charging Capacity Estimation,” J. Power Sources 247, pp.676-686, 2014.
    [34] W. Ke and N. Zhang, “Passive Equalization and the Expiration of Battery Packs on Chinese Electric Bicycles,” in Proceeding 2nd IEEE Conf. Industrial Electronics and Applications, pp.1370-1373, 2007.
    [35] 吳義利編譯,「切換式電源轉換器」,文笙書局,民國一百零九年。
    [36] 呂文隆、張簡士琨、曾國境編譯,「交換式電源設計」,全華科技圖書,2012。
    [37] 廖柏涵,「以剩餘容量為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程所碩士學位論文,民國一百零七年一月。
    [38] 林韋盛,「可縮短平衡時間之鋰離子電池組平衡器」,國立台灣科技大學電機工程所碩士學位論文,民國一百零八年六月。
    [39] Texas Instruments Inc., “TMS320F28004x, TMS320F28004x Digital Signal Controllers (DSCs),” Available:// http://www.ti.com/
    [40] Texas Instruments Inc., “TMS320x2833x Serial Communications Interface (SCI) Module,” Available:// http://www.ti.com/
    [41] Texas Instruments Inc., “TMS320x2833x Enhanced Pulse Width Modulator (ePWM) Module,” Available:// http://www.ti.com/
    [42] PSIM User's Guide, Powersim Inc. , 2003.

    無法下載圖示 全文公開日期 2024/01/28 (校內網路)
    全文公開日期 2026/01/28 (校外網路)
    全文公開日期 2024/01/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE