簡易檢索 / 詳目顯示

研究生: 曾吉永
Chi-yung Tseng
論文名稱: 運用合理策略改善燃料電池薄膜之導電度,穿透度及強度
Using rational strategies to improve the conductivity, permeability and strength of fuel cell membranes
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 高憲明
none
陳志堅
none
林智汶
none
劉豫川
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 148
中文關鍵詞: 薄膜燃料電池磺酸石墨烯
外文關鍵詞: membrane, fuel cell, sulfonated, graphite
相關次數: 點閱:309下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以混摻及交聯二種策略進行燃料電池質子交換膜之改質,並輔以各種物理化學分析技術,以鑑定合成質子交換膜之特性,其概分為以下三個部分來討論。
    本文中第一部分主要探討磺化聚亞醯胺-聚矽氧烷共聚物的結構-性質關係。由於矽氧烷鏈段不相容親水鏈段,因此會影響離子叢聚的大小與分布,進而造成相分離。藉由相分離的產生,形成大量的離子傳輸渠道,進而增加質子導電度。為了比較矽氧烷在性質上的影響,另外再以擁有良好成膜性之4,4'-二氨基二苯醚與1,4,5,8-萘四甲酸酐進行聚亞醯胺的反應,進而來做一系列詳細的比較。
    本文中第二部分主要藉由交聯劑的調控,在維持一定的導電度下,使甲醇穿透度降低。首先成功製備出具有高磺酸量的聚乙烯醇 [sulfonated poly(vinyl alcohol); SPVA],為了使磺化聚乙烯醇於水合狀態下更穩定,因此使用交聯劑之策略。為了達成此目的,首先導入4,4'-聯苯醚二酐 (ODPA)與磺化聚乙烯醇上之羥基反應,形成游離態的羧酸基,而此羧酸基又可進一步與環氧樹脂反應。另外,環氧樹脂也能夠與磺化聚乙烯醇上之羥基反應,藉由相互間的反應性,造成高交聯度的形成。由於環氧樹脂具有獨特的性質,如;高水解穩定性、高耐化性與優異的撓曲性。因此,經由網狀交聯的結構,不只可以降低吸水率與甲醇穿透的問題,同時也可改善機械強度與水解穩定性。
    本文中第三部分主要在探討磺化聚亞醯胺(sulfonated polyimide; SPI)與石墨烯氧化物(graphene oxide; GO)及具有聚苯乙烯磺酸石墨烯於質子交換膜之相互作用力。相較於原始磺化聚亞醯胺薄膜,比例0.5 wt%的石墨烯氧化物複合膜,其導電度於80 °C下增加5倍,甲醇穿透度降低5倍,同時,其機械性質於30 °C也增加1.3倍。因此,透過GO/SPI複合膜之設計,可顯著增進質子交換膜的性質。綜合以上,GO/SPI複合膜同時擁有各項優異特性,為一極具潛力應用於燃料電池之高分子電解質膜。


    In this study, we used the blend and cross-linke two kinds of strategy to modification the proton exchange membrane in fuel cell. The emphasis is classified into three categories:
    (Part 1) The focus of this work was the siloxane segmented with sulfonated polyimide and to study their structural-property relationships. The siloxanes are incompatible with the polyimides main chain as they influence the ordering and distribution of ionic clusters resulting in phase segregation. In addition, the flexibility of the siloxane segments was expected to inhibit the formation of a dense, well packed polyimide structure. The phase segregation of incompatible siloxane domains can lead to the formation of ion-rich channels and improved proton conduction. Sulfonated polyimides without siloxane segments were also prepared using 4,4’-oxydianiline (ODA) for comparison: such ODA based polyimides are reported to have good film-forming ability.
    (Part 2) The aim of this study was to adjust the cross-linking agent mass to reduce the methanol permeability while retaining the membrane’s proton conductivity. To achieve this objective, we synthesised and characterized PVA bearing a high content of sulfonic acid groups. To ensure the dimensional stability of the hydrated membranes, the cross-linking agents were employed. Initially, 4,4’-Oxydiphthalic anhydride (ODPA) was reacted with the hydroxyl groups of the SPVA to generate an ionizable carboxylic acid, which was then able to react with further epoxy groups. Additionally, the epoxy was able to further react with the hydroxyl groups of SPVA, leading to a higher degree of cross-linking. The addition of the epoxy provided unique properties such as: high hydrolytic stability, high chemical resistance and excellent flexibility. Therefore, the cross-linked network structure was expected to not only improve the mechanical properties and hydrolytic stability, but also reduce the water uptake and methanol permeability of the membranes.
    (Part 3) The goal of our investigation revealed structure-property relationships between graphene oxide (GO) and sulfonated polyimide (SPI). In addition to this we also present a chemical strategy to increase the sulfonic acid content of SPI membranes by incorporating graphene in the presence of poly(sodium 4-styrenesulfonate) (PSS-G). Compared to pristine SPI, the composites with 0.5 wt% GO show a 5-fold increase in proton conductivity and a 5-fold decrease in methanol permeability (at 80 ºC). Thus, through GO/SPI composite processing, composite membranes have been specifically designed to promote internal self-humidification, thereby increasing the PEMs water retention properties while easing water management, even at high temperatures and low humidities. Accompanying the positive trends for proton conductivity and methanol permeability was an increase in tensile strength, which was found to increase by 1.3-fold at 30 ºC. Based on the above, the composite membrane formed by our rational approach has excellent properties and may be a good candidate for polymer exchange membrane fuel cell applications.

    摘要 I Abstract IV LIST OF SCHEME IX LIST OF FIGURES X LIST OF TABLES XIII CHAPTER 1 1 1.1. Introduction to Proton Exchange Membrane Fuel Cells 1 1.1.1 The Generation of Power in the Future 1 1.1.2. Chemical Reactions Responsible for the Operation of a Fuel Cell 1 1.1.2.1 Hydrogen Fueled Proton Exchange Membrane Fuel Cells (PEMFC) 2 1.2.2.2 Direct Methanol Fuel Cells (DMFCs) 2 1.1.3. The Development of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells (DMFCs) 5 1.1.4. Requirements for DMFC Membranes 6 1.1.4.1. Conductivity 9 1.1.4.2. Methanol Crossover 10 1.1.4.3. Thermal Stability 10 1.1.4.4. Lifetime 11 1.1.5 Scope of the research 12 CHAPTER 2 13 2.1. Polymer Systems for Proton Exchange Membranes 13 2.1.1. Nafion and Other Poly(perfluorosulfonic acid) Membranes 13 2.1.2. PEMs Based on Poly(arylene ether)s 15 2.1.2.1. Postsulfonation of Existing Polymers 15 2.1.2.2. Direct Copolymerization of Sulfonated Monomers to Afford Random (Statistical) Copolymers 19 2.1.3. PEMs Based on Poly(vinyl alcohol)s 24 2.1.4. PEMs Based on Poly(imide)s 26 2.2. Graphene 33 2.2.1. Discovery of graphene 33 2.2.2. Polymer/graphene nanocomposites 34 2.2.2.1. Nafion/graphene nanocomposites 35 2.2.2.2. Polystyrene/graphene nanocomposites 35 2.2.2.3 Polyaniline/graphene nanocomposites 38 CHAPTER 3. Tuning transport properties by manipulating the phase segregation of tetramethyldisiloxane segments in modified polyimide electrolytes 41 3.1. Introduction 41 3.2. Experimental 43 3.2.1. Materials 43 3.2.2. Synthesis 43 3.2.3. Preparation of composite membranes. 44 3.2.4. Membrane Characterizations. 45 3.3. Results and Discussion 48 3.3.1. Characterization of composite membrane 48 3.3.2. Thermal properties of the membranes 50 3.3.3. Morphology analysis 51 3.3.4. Ionic exchange capacity (IEC), λ, water content 54 3.3.5. Proton conductivity 56 3.3.6. Methanol permeability 58 3.4. Summary 59 CHAPTER 4. Interpenetrating Network-Forming Sulfonated Poly(vinyl alcohol) Proton Exchange Membranes for Direct Methanol Fuel Cell Applications 60 4.1. Introduction 61 4.2. Experimental 64 4.2.1. Materials 64 4.2.2. Synthesis of sulfonated poly (vinyl acetal)s 64 4.2.3. Preparation of membranes 64 4.2.4. The characterization of the cross-linked SPVA membranes 66 4.3. Results and Discussion 70 4.3.1. Chemical structure evaluation 70 4.3.2. Thermal properties 73 4.3.3. Water content, ionic exchange capacity (IEC) and oxidative stability 74 4.3.4. Proton conductivity 77 4.3.5. Morphology 79 4.3.6. Methanol permeability 80 4.3. Summary 85 CHAPTER 5. Sulfonated Polyimide Proton Exchange Membranes with Graphene Oxide show improved Proton Conductivity, Methanol Crossover Impedance and Mechanical Properties 86 5.1. Introduction 86 5.2. Experimental 89 5.2.1. Materials 89 5.2.2. Preparation of graphene oxide (GO) and sulfonated polyimide (SPI) 89 5.2.3. Preparation of SPI/GO and SPI/PSS-G composites 91 5.2.4. Materials Characterization 91 5.3. Results and Discussion 94 5.3.1. Morphology analysis 94 5.3.2. Small angle X-ray scattering (SAXS) 95 5.3.3. Thermal properties of the membranes 96 5.3.4. IEC and uptake behavior 97 5.3.5. Proton conductivity 101 5.3.6. Methanol permeability 103 5.3.7. Mechanical Properties 106 5.4. Summary 107 CHAPTER 6 108 Conclusions 108 Curriculum Vitae 129 LIST OF SCHEME Scheme 3-1. Structures of SPI, SPI_DSX, and PI_DSX 49 Scheme 3-2. Scheme showing the segregation of hydrophilic/hydrophobic domains in the prepared membrane 54 LIST OF FIGURES Figure 1-1. Phenomena in a PEM fuel cell: two-dimensional sectional view 4 Figure 1-2. XRF traces showing ruthenium crossover to the cathode for two used membranes (open circle and square) vs. an unused membrane (open triangle). Reproduced by permission of The Electrochemical Society. 7 Figure 1-3. Illustration of proton transport in acidic aqueous solutions and in protic ionic liquids. Top: Grotthuss mechanism; the protons are passed along hydrogen bonds. Bottom: vehicle mechanism: the proton movement occurs with the aid of a moving ‘’vehicle’’ e.q., H2O and [Im] 9 Figure 2-1. Chemical structure of Nafion. X and y represent molar compositions and do not imply a sequence length 13 Figure 2-2. Several possible poly(arylene ether) chemical structures 16 Figure 2-3. Chemical structures of unsulfonated and sulfonated PEEK 17 Figure 2-4. Placement of the sulfonic acid group in postsulfonation (activated ring) versus direct copolymerization (deactivated ring) 19 Figure 2-5. Synthesis of 3, 3’-disulfonated 4, 4’-dichlorodiphenyl sulfone and its sodium salt 20 Figure 2-6. Chemical structures of unsulfonated and sulfonated PEEK 21 Figure 2-7. Atomic force micrographs of BPSH-40 and Nafion 117 22 Figure 2-8. Swelling in 30 oC liquid water for the BPSH series of copolymers 22 Figure 2-9. Some possible chemical structures for sulfonated PEMs from poly(arylene ether)s 23 Figure 2-10. Reaction scheme for the membrane preparation: representative structure of 26 Figure 2-11. Synthesis of SPI, a sulfonated six-membered ring polyimide based on BDSA, ODA, and NTDA 28 Figure 2-12. Six-membered ring copolyimide prepared with bulky unsulfonated diamine 30 Figure 2-13. Sulfonated diamines for direct synthesis of sulfonated polyimides 31 Figure 2-14. Synthesis of a five-membered ring sulfonated polyimide containing phosphine oxide 32 Figure 2-15. Sulfonated six-membered ring polyimides with noverl sulfonated diamines 33 Figure 2-16. Graphene (top left) is a honeycomb lattice of carbon atoms. Graphite (top right) can be viewed as a stack of graphene layers. Carbon nanotubes are rolled-up cylinders of graphene (bottom left). Fullerenes (C60) are molecules consisting of wrapped graphene through the introduction of pentagons on the hexagonal lattice (Reproduced with permission from Neto et al.) 34 Figure 2-17. Shematic diagram of the in-situ formation of PS/GNS nanocomposites. First (i) GO and styrene monomer are emulsified together in SDS, then (ii) styrene is polymerized using KPS, and finally (iii) GO is reduced using hydrazine monohydrate resulting in the formation of PS/GNS nanocomposites 37 Figure 2-18. TEM images of PS/GNS nanocomposites at different magnifications. It reveals that polystyrene microspheres with diameters in the range of 90-150 nm are attached to the surface of graphene especially along the edges of the stacked nanosheets with thicknesses of several nanometers 37 Figure 2-19. Raman spectra of the pristine GNS and PS/GNS nanocomposites 38 Figure 2-20. Illustration of the process for preparing PANI/graphene composites. (i) Aniline and GO are dispersed in amedium, (ii) aniline is oxidized to PANI (EB) using APS, (ii) GO is reduced to graphene using hydrazine, but at the same time PANI (EB) is also reduced to PANI (LB), hence (iv) PANI (LB) is again oxidized to PANI (EB) using APS 39 Figure 2-21 TGA curves of GO, graphene, PANI, PANI/GO, and PANI/graphene (heating rate = 10 °C /min under a nitrogen atmosphere) 40 Figure 3-1. The 1H-NMR spectrum of SPI_DSX . 50 Figure 3-2. The FTIR spectrum of SPI, SPI_DSX, and PI_DSX . 50 Figure 3-3. TGA thermodiagram, temperature held under 100 °C for 30 min and then raised to 900 °C 51 Figure 3-4. TEM micrographs of composite membrane: (a) SPI, (b) SPI_DSX10, (c) SPI_DSX30, (d) SPI_DSX50, (e) SPI_DSX75, (f) SPI_DSX100, (g) PI_DSX50. (h) EDX analysis for the image [1(g)] at (a) position 1 and (b) position 2 53 Figure 3-5. The water uptake, IEC of composite membranes as a function of SPI DSX amount . 56 Figure 3-6. Proton conductivity of composite membranes and Nafion117 membrane as a function of temperature, at 100% relative humidity. 58 Figure 4-1. Schematic diagram of cross-linked sulfonated PVA with ODPA and epoxy cross-linkers 65 Figure 4-2. (a) 1H-NMR and 13C-NMR spectrum of the SPVA. (b) 13C CP/MAS NMR spectrum of SPVA15 72 Figure 4-3. The FTIR spectrum of PVA, SPVA, and SPVA15 72 Figure 4-4. TGA thermodiagram, temperature held under 100 °C for 30 min and then raised to 900 °C 74 Figure 4-5. TGA thermodiagram, temperature held under 100 °C for 30 min and then raised to 900 °C 76 Figure 4-6. DSC melting curve of swelling membrane 77 Figure 4-7. Proton conductivity of composite membranes and Nafion117 membrane as a function of temperature, at 100% relative humidity 79 Figure 4-8. TEM micrographs of composite membrane: (a) SPVA3, (b) SPVA7, (c) SPVA10, (d) SPVA15, (e) SPVA50 80 Figure 4-9. Methanol permeability of composite membranes at 30 °C with different methanol concentration 81 Figure 4-10. Stress-strain curves of composite membranes 82 Figure 4-11. The performance comparison for the DMFCs with SPVA3, SPVA7 and Nafion117 membranes with a 3 M methanol fuel at 70 °C 84 Figure 5-1. Schematic representation of the preparation of the SPI. 90 Figure 5-2. TEM images of (a) 0 wt% (X400,000), (b) 0 wt% (X100,000), (c) 0.5 wt% (X100,000), (d) 0.9 wt% (X100,000); SEM images of SPI/GO:(e) 0.5 wt%, (f) 0.9 wt% 95 Figure 5-3. The SAXS data of ln[q4 I(q)] versus 10q2 curves of the membranes 96 Figure 5-4. TGA curves of GO and SPI/GO: 0 wt%, 0.5 wt%, 0.9 wt%. 97 Figure 5-5. Photographs of GO and PSS_G in deionized water, methanol and H2O/methanol dispersion 100 Figure 5-6. The water desorption curves of the composite membranes at 60 oC. The values correspond to the water diffusion coefficients (×10−5 cm−2 s−1) 100 Figure 5-7. Influence of 60% relative humidity on the proton conductivity of the composite membranes at 60 oC and 90 oC 102 Figure 5-8. Proton conductivity of composite membranes and Nafion117 membrane as a function of temperature, at 95% relative humidity 102 Figure 5-9. Methanol permeability of composite membranes at 30 oC and 80 oC 104 Figure 5-10. Scheme showing the GO loading in the prepared membrane 105 Figure 5-11. Selectivity of composite membranes and Nafion117 at 30 and 80 º C 105 Figure 5-12. Representative stress-strain behavior of the composite membranes. 106 LIST OF TABLES Table 1-1. Classification of DMFC polymer membranes 8 Table 1-2. Effect of DMFC parameters on methanol crossover 11 Table 3-1. Characterization of IEC, Water uptake, Composition of state of water and Activation energy (Ea) of composite membranes and Nafion117 45 Table 3-2. Methanol transport properties of composite membranes and Nafion117 56 Table 4-1. The properties of membranes 66 Table 5-1. Properties of resultant composite membranes 99

    1. Jagur-Grodzinski J: Polymeric materials for fuel cells: concise review of recent studies. Polymers for Advanced Technologies 2007, 18(10):785-799.
    2. Larminie J, Dicks A: Fuel Cell Systems Explained. John Wiley & Sons Inc 2003.
    3. Varcoe JR, Slade RCT: Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells. Fuel Cells 2005, 5(2):187-200.
    4. Piela P, Czerwinski A: Review of fuel cell technology, Part I Przem Chem 2006, 85:13.
    5. Piela P, Czerwinski A: Review of fuel cell technology, Part II Przem Chem 2006, 85:164.
    6. NIST: PEM Fuel Cells 2006 2006.
    7. Service RF: Shrinking Fuel Cells Promise Power in Your Pocket. Science 2002, 296(5571):1222-1224.
    8. Lu GQ, Wang CY, Yen TJ, Zhang X: Development and characterization of a silicon-based micro direct methanol fuel cell. Electrochimica Acta 2004, 49(5):821-828.
    9. Blum A, Duvdevani T, Philosoph M, Rudoy N, Peled E: Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications. Journal of Power Sources 2003, 117(1-2):22-25.
    10. Kelley SC, Deluga GA, Smyrl WH: A Miniature Methanol/Air Polymer Electrolyte Fuel Cell. Electrochemical and Solid-State Letters 2000, 3(9):407-409.
    11. L. D P: Computer 2003, 36:10.
    12. Aricò AS, Srinivasan S, Antonucci V: DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 2001, 1(2):133-161.
    13. Kalhammer FR, Prokopius Pr, Rona VP, Voecks GE: Status and Prospects of Fuel Cells as Automobile Engies, A Report of the Fuel Cell Technical Advisory Panel. Fuel Cell Technical Advisory Panel 1998.
    14. Neburchilov V, Martin J, Wang H, Zhang J: A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources 2007, 169(2):221-238.
    15. DuPont website : http://www.dupont.com/fuelcells.
    16. Savadogo O: Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. Journal of New Materials for Electrochemical Systems 1998, 1(1):47-66.
    17. Küver A, Potje-Kamloth K: Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell. Electrochimica Acta 1998, 43(16-17):2527-2535.
    18. Yoshitake M, Kunisa Y, Endoh E, Yanagisawa E: US Patent 6,933,071 (August 23, 2005).
    19. Miyake N, Wakizoe M, Honda E, Ohta T: Durability of Asahi Kasei Àciplex membrane for PEM fuel cell application. In: 2004; 2004: 1880.
    20. Penner RM, Martin CR: Ion Transporting Composite Membranes. Journal of The Electrochemical Society 1985, 132(2):514-515.
    21. Bahar B, Hobson AR, Kolde JA, Zuckerbrod D: US Patent 5, 547, 551 (August 20, 1996).
    22. 3P Energy website: http://www.3p-energy.de.
    23. Miyake N, Wainright JS, Savinell RF: Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability. Journal of The Electrochemical Society 2001, 148(8):A905-A909.
    24. Zawodzinski JTA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S: Water Uptake by and Transport Through Nafion[sup [registered sign]] 117 Membranes. Journal of The Electrochemical Society 1993, 140(4):1041-1047.
    25. Arimura T, Ostrovskii D, Okada T, Xie G: The effect of additives on the ionic conductivity performances of perfluoroalkyl sulfonated ionomer membranes. Solid State Ionics 1999, 118(1-2):1-10.
    26. Kim Y-M, Park K-W, Choi J-H, Park I-S, Sung Y-E: A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemistry Communications 2003, 5(7):571-574.
    27. Ma ZQ, Cheng P, Zhao TS: A palladium-alloy deposited Nafion membrane for direct methanol fuel cells. Journal of Membrane Science 2003, 215(1-2):327-336.
    28. Rodriguez JIG, Ladewig B, Dicks A, Duke M, Costa JCDd: Proceedings of the ARCCFN Annual Conference, Coffs Harbour 2004, December 2-3:10-13.
    29. Dimitrova P, Friedrich KA, Stimming U, Vogt B: Modified Nafion®-based membranes for use in direct methanol fuel cells. Solid State Ionics 2002, 150(1-2):115-122.
    30. Antonucci PL, Aricò AS, Cretì P, Ramunni E, Antonucci V: Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 1999, 125(1-4):431-437.
    31. Tazi B, Savadogo O: Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene. Electrochimica Acta 2000, 45(25-26):4329-4339.
    32. Yang C, Srinivasan S, Arico AS, Creti P, Baglio V, Antonucci V: Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature. Electrochemical and Solid-State Letters 2001, 4(4):A31-A34.
    33. Vaivars G, Maxakato NW, Mokrani T, Petrik L, Klavins J, Gericke G, Linkov V: Zirconium Phosphate Based Inorganic Direct Methanol Fuel Cell MATERIALS SCIENCE 2004, 10:162-165.
    34. Park Y-S, Yamazaki Y: Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polymer Bulletin 2005, 53(3):181-192.
    35. Tricoli V, Nannetti F: Zeolite-Nafion composites as ion conducting membrane materials. Electrochimica Acta 2003, 48(18):2625-2633.
    36. Kerres J, Ullrich A, Meier F, Häring T: Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics 1999, 125(1-4):243-249.
    37. Ball SC: Electrochemistry of Proton Conducting Membrane Fuel Cells. Platinum Metals Review 2005, 49(1):27-32.
    38. Kim YS, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS: Direct Methanol Fuel Cell Performance of Disulfonated Poly(arylene ether benzonitrile) Copolymers. Journal of The Electrochemical Society 2004, 151(12):A2150-A2156.
    39. Jones DJ, Rozière J: Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. Journal of Membrane Science 2001, 185(1):41-58.
    40. Kreuer KD: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science 2001, 185(1):29-39.
    41. Kerres J. A., Development of ionomer membranes for fuel cells. Journal of Membrane Science 2001, 185:3-27.
    42. Rikukawa M, Sanui K: Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science 2000, 25(10):1463-1502.
    43. Roziére J, Jones DJ: Non-fluorinated polymer materials for proton exchange membrane fuel cells. In., vol. 33; 2003: 503-555.
    44. Bauer B, Jones DJ, Rozière J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, Ramunni E: Electrochemical characterisation of sulfonated polyetherketone membranes. Journal of New Materials for Electrochemical Systems 2000, 3(2):93-98.
    45. Mehdizadeh H, Molaiee-Nejad K, Chong YC: Modeling of mass transport of aqueous solutions of multi-solute organics through reverse osmosis membranes in case of solute-membrane affinity: Part 1. Model development and simulation. Journal of Membrane Science 2005, 267(1-2):27-40.
    46. Jörissen L, Gogel V, Kerres J, Garche J: New membranes for direct methanol fuel cells. Journal of Power Sources 2002, 105(2):267-273.
    47. Alberti G, Casciola M, Massinelli L, Bauer B: Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C). Journal of Membrane Science 2001, 185(1):73-81.
    48. Rodrigues SJ, Reitz TL, Dang TD, Bai Z, Bardua K: Polyarylenethioethersulfone Membranes for Fuel Cells. Journal of The Electrochemical Society 2007, 154(9):B960-B968.
    49. Lufrano F, Squadrito G, Patti A, Passalacqua E: Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells. Journal of Applied Polymer Science 2000, 77(6):1250-1256.
    50. Coplan MJ, Goetz G: US Patent 4,413,106 November 1, 1983.
    51. Nolte R, Ledjeff K, Bauer M, Mülhaupt R: Partially sulfonated poly(arylene ether sulfone) - A versatile proton conducting membrane material for modern energy conversion technologies. Journal of Membrane Science 1993, 83(2):211-220.
    52. Chen S-L, Krishnan L, Srinivasan S, Benziger J, Bocarsly AB: Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells. Journal of Membrane Science 2004, 243(1-2):327-333.
    53. Wang JT, Wainright JS, Savinell RF, Litt M: A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. Journal of Applied Electrochemistry 1996, 26(7):751-756.
    54. Zhai Y, Zhang H, Zhang Y, Xing D: A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells. Journal of Power Sources 2007, 169(2):259-264.
    55. Qian G, Smith Jr DW, Benicewicz BC: Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB-PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer 2009, 50(16):3911-3916.
    56. Weber J, Kreuer K-D, Maier J, Thomas A: Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)-Phosphoric Acid Adducts. Advanced Materials 2008, 20(13):2595-2598.
    57. Kang S, Zhang C, Xiao G, Yan D, Sun G: Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3'-disulfonate-4,4'-dicarboxylbiphenyl as proton exchange membranes. Journal of Membrane Science 2009, 334(1-2):91-100.
    58. Lehtinen T, Sundholm G, Holmberg S, Sundholm F, Björnbom P, Bursell M: Electrochemical characterization of PVDF-based proton conducting membranes for fuel cells. Electrochimica Acta 1998, 43(12-13):1881-1890.
    59. Hietala S, Koel M, Skou E, Elomaa M, Sundholm F: Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride). Journal of Materials Chemistry 1998, 8(5):1127-1132.
    60. Polyfuel website: http://www.polyfuel.com.
    61. Ponce ML, de A. Prado LAS, Silva V, Nunes SP: Membranes for direct methanol fuel cell based on modified heteropolyacids. Desalination 2004, 162:383-391.
    62. Resnick PR, Grot WG: US Patent 4,113, 585 DE, Sept 12, 1978, of E. I. du Pont de Nemours and Company, Wilmington.
    63. Ibrahim SM, Price EH, Smith RA: 1983, of E. I. du Pont de Nemours. Proc. Electrochem. Soc.:83-86.
    64. Bahar B, Cavalca C, Cleghorn S, Kolde J, Lane D, Murthy M, Rusch G: Effective selection and use of advanced membrane electrode power assemblies. Journal of New Materials for Electrochemical Systems 1999, 2(3):179-182.
    65. Lin JC, Kuntz HR, Fenton JM: Proc Electrochem Soc Power Sources New Millenium 2001, 2000:48.
    66. Beckerbauer R: US Patent 3,714,245 DE, Jan 30, 1973, of E. I. du Pont de Nemours and Company, Wilmington.
    67. Grot WG: US Patent 3,718,627 DE, Feb 27, 1973, of E. I. du Pont de Nemours and Company, Wilmington.
    68. Grot WG: US Patent 4,433,082 DE, Feb 21, 1984, of E. I. du Pont de Nemours and Company, Wilmington.
    69. Tant MR, Darst KP, Lee KD, Martin CW: ACS Symp Ser 1989, 395:370.
    70. Pang J, Zhang H, Li X, Jiang Z: Novel Wholly Aromatic Sulfonated Poly(arylene ether) Copolymers Containing Sulfonic Acid Groups on the Pendants for Proton Exchange Membrane Materials. Macromolecules 2007, 40(26):9435-9442.
    71. Noshay A, Robeson LM: Sulfonated polysulfone. Journal of Applied Polymer Science 1976, 20(7):1885-1903.
    72. Johnson BC, Yilgör İ, Tran C, Iqbal M, Wightman JP, Lloyd DR, McGrath JE: Synthesis and characterization of sulfonated poly(acrylene ether sulfones). Journal of Polymer Science: Polymer Chemistry Edition 1984, 22(3):721-737.
    73. Genova-Dimitrova P, Baradie B, Foscallo D, Poinsignon C, Sanchez JY: Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid. Journal of Membrane Science 2001, 185(1):59-71.
    74. Kaliaguine S, Mikhailenko SD, Wang KP, Xing P, Robertson G, Guiver M: Properties of SPEEK based PEMs for fuel cell application. Catalysis Today 2003, 82(1-4):213-222.
    75. Robertson GP, Mikhailenko SD, Wang K, Xing P, Guiver MD, Kaliaguine S: Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication. Journal of Membrane Science 2003, 219(1-2):113-121.
    76. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S: Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. Journal of Membrane Science 2000, 173(1):17-34.
    77. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Wang K, Kaliaguine S: Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. Journal of Membrane Science 2004, 229(1-2):95-106.
    78. Bishop MT, Karasz FE, Russo PS, Langley KH: Solubility and properties of a poly(aryl ether ketone) in strong acids. Macromolecules 1985, 18(1):86-93.
    79. Huang RYM, Shao P, Burns CM, Feng X: Sulfonation of poly(ether ether ketone)(PEEK): Kinetic study and characterization. Journal of Applied Polymer Science 2001, 82(11):2651-2660.
    80. Bailly C, Williams DJ, Karasz FE, MacKnight WJ: The sodium salts of sulphonated poly(aryl-ether-ether-ketone) (PEEK): Preparation and characterization. Polymer 1987, 28(6):1009-1016.
    81. Zhang Q-X, Yu Z-Z, Yang M, Ma J, Mai Y-W: Multiple melting and crystallization of nylon-66/montmorillonite nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2003, 41(22):2861-2869.
    82. Robeson LM, Matzner M: US Patent 4,380,598 1983, of Union Carbide, Inc.
    83. Ueda M, Toyota H, Ouchi T, Sugiyama J-I, Yonetake K, Masuko T, Teramoto T: Synthesis and characterization of aromatic poly(ether sulfone)s containing pendant sodium sulfonate groups. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31(4):853-858.
    84. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE: Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes. Journal of Membrane Science 2002, 197(1-2):231-242.
    85. Harrison WL, Wang F, Mecham JB, Bhanu VA, Hill M, Kim YS, McGrath JE: Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41(14):2264-2276.
    86. Wiles KB, Bhanu VA, Wang F, McGrath JE: Polym Prepr 2002, 43:993.
    87. Liu Y-L, Chiu Y-C: Novel approach to the chemical modification of poly(vinyl alcohol): Phosphorylation. Journal of Polymer Science Part A: Polymer Chemistry 2003, 41(8):1107-1113.
    88. Takada N, Koyama T, Suzuki M, Kimura M, Hanabusa K, Shirai H, Miyata S: Ionic conduction of novel polymer composite films based on partially phosphorylated poly(vinyl alcohol). Polymer 2002, 43(7):2031-2037.
    89. Yahya GO, Asrof Ali SK, Hamad EZ: Surface and interfacial activities of hydrophobically modified poly(vinyl alcohol) (PVA). Polymer 1996, 37(7):1183-1188.
    90. Takasu A, Ohmori S, Yamauchi Y, Hirabayashi T: Micellar polymerization of amphiphilic poly(vinyl alcohol) macromonomer having a methacrylate end group prepared by aldol-type group-transfer polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40(24):4477-4484.
    91. Aoshima S, Segawa Y, Okada Y: Cationic polymerization of styrene in the presence of added base: Living nature of the propagating species and synthesis of poly(vinyl alcohol)-graft-polystyrene. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39(5):751-755.
    92. Budhlall BM, Sudol ED, Dimonie VL, Klein A, El-Aasser MS: Role of grafting in the emulsion polymerization of vinyl acetate with poly(vinyl alcohol) as an emulsifier. I. Effect of the degree of blockiness on the kinetics and mechanism of grafting. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39(20):3633-3654.
    93. Zaikov GE, Lomakin SM: Innovative type of low flammability varnish based on poly(vinyl alcohol). Polymer Degradation and Stability 1997, 57(3):279-282.
    94. Lomakin SM, Zaikov GE: New type of ecologically safe flame retardant based on polymer char former. Polymer Degradation and Stability 1996, 51(3):343-350.
    95. Zaikov GE, Lomakin SM: New aspects of ecologically friendly polymer flame retardant systems. Polymer Degradation and Stability, 54(2-3):223-233.
    96. Pivovar BS, Wang Y, Cussler EL: Pervaporation membranes in direct methanol fuel cells. Journal of Membrane Science 1999, 154(2):155-162.
    97. Kim SY, Shin HS, Lee YM, Jeong CN: Properties of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus. Journal of Applied Polymer Science 1999, 73(9):1675-1683.
    98. Blanco JF, Nguyen QT, Schaetzel P: Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo. Journal of Membrane Science 2001, 186(2):267-279.
    99. Bum Park H, Yong Nam S, Won Rhim J, Min Lee J, Kim SE, Ran Kim J, Moo Lee Y: Gas-transport properties through cation-exchanged sulfonated polysulfone membranes. Journal of Applied Polymer Science 2002, 86(10):2611-2617.
    100. Bolto B, Tran T, Hoang M, Xie Z: Crosslinked poly(vinyl alcohol) membranes. Progress in Polymer Science 2009, 34(9):969-981.
    101. Nagarale RK, Gohil GS, Shahi VK, Rangarajan R: Organic−Inorganic Hybrid Membrane: Thermally Stable Cation-Exchange Membrane Prepared by the Sol−Gel Method. Macromolecules 2004, 37(26):10023-10030.
    102. Binsu VV, Nagarale RK, Shahi VK: Phosphonic acid functionalized aminopropyl triethoxysilane-PVA composite material: organic-inorganic hybrid proton-exchange membranes in aqueous media. Journal of Materials Chemistry 2005, 15(45):4823-4831.
    103. Tripathi BP, Saxena A, Shahi VK: Phosphonic acid grafted bis(4-[gamma]-aminopropyldiethoxysilylphenyl)sulfone (APDSPS)-poly(vinyl alcohol) cross-linked polyelectrolyte membrane impervious to methanol. Journal of Membrane Science 2008, 318(1-2):288-297.
    104. Kim DS, Guiver MD, Seo MY, Cho HI, Kim DH, Rhim JW, Moon GY, Nam SY: Influence of silica content in crosslinked PVA/PSSA_MA/silica hybrid membrane for direct methanol fuel cell (DMFC). Macromolecular Research 2007, 15(5):412-417.
    105. Jin Y, Diniz da Costa JC, Lu GQ: Proton conductive composite membrane of phosphosilicate and polyvinyl alcohol. Solid State Ionics 2007, 178(13-14):937-942.
    106. Shanmugam S, Viswanathan B, Varadarajan TK: Synthesis and characterization of silicotungstic acid based organic-inorganic nanocomposite membrane. Journal of Membrane Science 2006, 275(1-2):105-109.
    107. Anis A, Banthia AK, Bandyopadhyay S: Synthesis and characterization of polyvinyl alcohol copolymer/phosphomolybdic acid-based crosslinked composite polymer electrolyte membranes. Journal of Power Sources 2008, 179(1):69-80.
    108. Li L, Xu L, Wang Y: Novel proton conducting composite membranes for direct methanol fuel cell. Materials Letters 2003, 57(8):1406-1410.
    109. Kim SY, Sumner MJ, Harrison WL, Riffle JS, McGrath JE, Pivovar BS: Direct methanol fuel cell performance of disulfonated poly(arylene ether benzonitrile) copolymers. Journal of The Electrochemical Society 2004, 151(12):A2150-A2156.
    110. Genies C, Mercier R, Sillion B, Petiaud R, Cornet N, Gebel G, Pineri M: Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 2001, 42(12):5097-5105.
    111. Genies C, Mercier R, Sillion B, Cornet N, Gebel G, Pineri M: Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 2001, 42(2):359-373.
    112. Cornet N, Diat O, Gebel G, Jousse F, Marsacq D, Mercier R, Pineri M: Sulfonated polyimide membranes: A new type of ion-conducting membrane for electrochemical applications. Journal of New Materials for Electrochemical Systems 2000, 3(1):33-42.
    113. Vallejo E, Pourcelly G, Gavach C, Mercier R, Pineri M: Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. Journal of Membrane Science 1999, 160(1):127-137.
    114. Zhang Y, Litt M, Savinell RF, Wainright JS: Polym Prepr 1999, 40:480.
    115. Zhang Y, Litt M, Savinell RF, Wainright JS, Vendramint J: Polym Prepr 2000, 41:1561.
    116. Zhou W, Watari T, Kita H, Okamoto K-I: Chem Lett 2002, 5:534.
    117. Fang J, Guo X, Harada S, Watari T, Tanaka K, Kita H, Okamoto K-i: Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4‘-Diaminodiphenyl Ether-2,2‘-disulfonic Acid. Macromolecules 2002, 35(24):9022-9028.
    118. Guo X, Fang J, Watari T, Tanaka K, Kita H, Okamoto K-i: Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid. Macromolecules 2002, 35(17):6707-6713.
    119. Yin Y, Fang J, Cui Y, Tanaka K, Kita H, Okamoto K-i: Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid. Polymer 2003, 44(16):4509-4518.
    120. Shobha HK, Sankarapandian M, Glass TE, McGrath JE: Polym Prepr 2000, 41:1298.
    121. Einsla BR, Hong Y-T, Seung Kim Y, Wang F, Gunduz N, McGrath JE: Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells. I. Monomer and copolymer synthesis. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42(4):862-874.
    122. Einsla BR, Kim YS, Hickner MA, Hong Y-T, Hill ML, Pivovar BS, McGrath JE: Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance. Journal of Membrane Science 2005, 255(1-2):141-148.
    123. Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene. Rev Mod Phys 2009, 81:109.
    124. Neto AHC, Guinea F, Peres NMR: Drawing conclusions from graphene. . Phys World 2006, 19:33.
    125. Wallace PR: The Band Theory of Graphite. Physical Review 1947, 71(9):622.
    126. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306(5696):666-669.
    127. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS: Graphene-based composite materials. Nature 2006, 442(7100):282-286.
    128. Ansari S, Giannelis EP: Functionalized graphene sheet—Poly(vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2009, 47(9):888-897.
    129. RamanathanT, Abdala AA, StankovichS, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, ChenX, Ruoff RS et al: Functionalized graphene sheets for polymer nanocomposites. Nat Nano 2008, 3(6):327-331.
    130. Lee YR, Raghu AV, Jeong HM, Kim BK: Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in situ Method. Macromolecular Chemistry and Physics 2009, 210(15):1247-1254.
    131. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y: A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Research 2009, 2(4):343-348.
    132. Iroh JO, Bell JP, Scola DA, Wesson JP: Electrochemical process for preparing continuous graphite fibre-thermoplastic composites. Polymer 1994, 35(6):1306-1311.
    133. Zhao X, Zhang Q, Chen D, Lu P: Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules 2010, 43(5):2357-2363.
    134. Yasmin A, Luo J-J, Daniel IM: Processing of expanded graphite reinforced polymer nanocomposites. Composites Science and Technology 2006, 66(9):1182-1189.
    135. Ganguli S, Roy AK, Anderson DP: Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008, 46(5):806-817.
    136. Chen G, Wu D, Weng W, Wu C: Exfoliation of graphite flake and its nanocomposites. Carbon 2003, 41(3):619-621.
    137. Zheng W, Wong S-C, Sue H-J: Transport behavior of PMMA/expanded graphite nanocomposites. Polymer 2002, 43(25):6767-6773.
    138. Kalaitzidou K, Fukushima H, Drzal LT: A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology 2007, 67(10):2045-2051.
    139. Causin V, Marega C, Marigo A, Ferrara G, Ferraro A: Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. European Polymer Journal 2006, 42(12):3153-3161.
    140. Kim S, Do I, Drzal LT: Multifunctional xGnP/LLDPE Nanocomposites Prepared by Solution Compounding Using Various Screw Rotating Systems. Macromolecular Materials and Engineering 2009, 294(3):196-205.
    141. Kim S, Do I, Drzal LT: Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polymer Composites 2010, 31(5):755-761.
    142. Zheng W, Lu X, Wong S-C: Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. Journal of Applied Polymer Science 2004, 91(5):2781-2788.
    143. Chen G, Wu C, Weng W, Wu D, Yan W: Preparation of polystyrene/graphite nanosheet composite. Polymer 2003, 44(6):1781-1784.
    144. Fukushima H, Drzal L, Rook B, Rich M: Thermal conductivity of exfoliated graphite nanocomposites. Journal of Thermal Analysis and Calorimetry 2006, 85(1):235-238.
    145. Du XS, Xiao M, Meng YZ: Facile synthesis of highly conductive polyaniline/graphite nanocomposites. European Polymer Journal 2004, 40(7):1489-1493.
    146. Du XS, Xiao M, Meng YZ: Synthesis and characterization of polyaniline/graphite conducting nanocomposites. Journal of Polymer Science Part B: Polymer Physics 2004, 42(10):1972-1978.
    147. Cho D, Lee S, Yang G, Fukushima H, Drzal LT: Dynamic Mechanical and Thermal Properties of Phenylethynyl-Terminated Polyimide Composites Reinforced With Expanded Graphite Nanoplatelets. Macromolecular Materials and Engineering 2005, 290(3):179-187.
    148. Li H, Chen J, Han S, Niu W, Liu X, Xu G: Electrochemiluminescence from tris(2,2'-bipyridyl)ruthenium(II)-graphene-Nafion modified electrode. Talanta 2009, 79(2):165-170.
    149. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y: Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47(3):922-925.
    150. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45(7):1558-1565.
    151. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF: Geometrical percolation threshold of overlapping ellipsoids. Physical Review E 1995, 52(1):819.
    152. Zhang K, Zhang LL, Zhao XS, Wu J: Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials 2010, 22(4):1392-1401.
    153. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud'homme RK et al: Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials 2007, 19(18):4396-4404.
    154. Bhadra S, Khastgir D, Singha NK, Lee JH: Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 2009, 34(8):783-810.
    155. Zhang H, Cao G, Wang W, Yuan K, Xu B, Zhang W, Cheng J, Yang Y: Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochimica Acta 2009, 54(4):1153-1159.
    156. Miyake N, Wainright JS, Savinell RF: Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Proton Electrolyte Membrane Fuel Cell Applications: I. Proton Conductivity and Water Content. Journal of The Electrochemical Society 2001, 148(8):A898-A904.
    157. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA: Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta 2000, 45(15-16):2403-2421.
    158. Li Y, Wang F, Yang J, Liu D, Roy A, Case S, Lesko J, McGrath JE: Synthesis and characterization of controlled molecular weight disulfonated poly(arylene ether sulfone) copolymers and their applications to proton exchange membranes. Polymer 2006, 47(11):4210-4217.
    159. Zhang X, Liu S, Liu L, Yin J: Partially sulfonated poly(arylene ether sulfone)-b-polybutadiene for proton exchange membrane. Polymer 2005, 46(6):1719-1723.
    160. Wiles KB, Wang F, McGrath JE: Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. I. Synthesis and characterization. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43(14):2964-2976.
    161. Kim DS, Park HB, Jang JY, Lee YM: Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A: Polymer Chemistry 2005, 43(22):5620-5631.
    162. Xing P, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S: Sulfonated Poly(aryl ether ketone)s Containing the Hexafluoroisopropylidene Diphenyl Moiety Prepared by Direct Copolymerization, as Proton Exchange Membranes for Fuel Cell Application†. Macromolecules 2004, 37(21):7960-7967.
    163. Okazaki Y, Nagaoka S, Kawakami H: Proton-conductive membranes based on blends of polyimides. Journal of Polymer Science Part B: Polymer Physics 2007, 45(11):1325-1332.
    164. Yin Y, Yamada O, Hayashi S, Tanaka K, Kita H, Okamoto K-I: Chemically modified proton-conducting membranes based on sulfonated polyimides: Improved water stability and fuel-cell performance. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44(12):3751-3762.
    165. Li Y, Jin R, Cui Z, Wang Z, Xing W, Qiu X, Ji X, Gao L: Synthesis and characterization of novel sulfonated polyimides from 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid. Polymer 2007, 48(8):2280-2287.
    166. Jang W, Choi S, Lee S, Shul Y, Han H: Characterizations and stability of polyimide-phosphotungstic acid composite electrolyte membranes for fuel cell. Polymer Degradation and Stability 2007, 92(7):1289-1296.
    167. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M: Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications. Journal of the American Chemical Society 2006, 128(5):1762-1769.
    168. Lee C, Sundar S, Kwon J, Han H: Structure–property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42(14):3612-3620.
    169. Álvarez-Gallego Y, Nunes SP, Lozano AE, de la Campa JG, de Abajo J: Synthesis and Properties of Novel Polyimides Bearing Sulfonated Benzimidazole Pendant Groups. Macromolecular Rapid Communications 2007, 28(5):616-622.
    170. Zou L, Roddecha S, Anthamatten M: Morphology, hydration, and proton transport in novel sulfonated polyimide-silica nanocomposites. Polymer 2009, 50(14):3136-3144.
    171. Lee CH, Park HB, Chung YS, Lee YM, Freeman BD: Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES). Macromolecules 2005, 39(2):755-764.
    172. Kim H-J, Cho SY, An SJ, Eun YC, Kim J-Y, Yoon H-K, Kweon H-J, Yew KH: Synthesis of Poly(2,5-benzimidazole) for Use as a Fuel-Cell Membrane. Macromolecular Rapid Communications 2004, 25(8):894-897.
    173. Lee H-S, Roy A, Lane O, McGrath JE: Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells. Polymer 2008, 49(25):5387-5396.
    174. Sukumar PR, Wu W, Markova D, Ünsal Ö, Klapper M, Müllen K: Functionalized Poly(benzimidazole)s as Membrane Materials for Fuel Cells. Macromolecular Chemistry and Physics 2007, 208(19-20):2258-2267.
    175. Gómez-Romero P, Asensio JA, Borrós S: Hybrid proton-conducting membranes for polymer electrolyte fuel cells: Phosphomolybdic acid doped poly(2,5-benzimidazole)--(ABPBI-H3PMo12O40). Electrochimica Acta 2005, 50(24):4715-4720.
    176. Kim S-K, Kim T-H, Jung J-W, Lee J-C: Copolymers of Poly(2,5-benzimidazole) and Poly[2,2’-(p-phenylene)-5,5’-bibenzimidazole] for High-Temperature Fuel Cell Applications. Macromolecular Materials and Engineering 2008, 293(11):914-921.
    177. Gebel G: Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 2000, 41(15):5829-5838.
    178. Kim YJ, Choi WC, Woo SI, Hong WH: Proton conductivity and methanol permeation in Nafion(TM)/ORMOSIL prepared with various organic silanes. Journal of Membrane Science 2004, 238(1-2):213-222.
    179. de Zea Bermudez V, Alcácer L, Acosta JL, Morales E: Synthesis and characterization of novel urethane cross-linked ormolytes for solid-state lithium batteries. Solid State Ionics 1999, 116(3-4):197-209.
    180. de Souza PH, Bianchi RF, Dahmouche K, Judeinstein P, Faria RM, Bonagamba TJ: Solid-State NMR, Ionic Conductivity, and Thermal Studies of Lithium-doped Siloxane−Poly(propylene glycol) Organic−Inorganic Nanocomposites. Chemistry of Materials 2001, 13(10):3685-3692.
    181. Chang Y-W, Wang E, Shin G, Han J-E, Mather PT: Poly(vinyl alcohol) (PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications. Polymers for Advanced Technologies 2007, 18(7):535-543.
    182. Suresh G, Pandey AK, Goswami A: Permeability of water in poly(perfluorosulfonic) acid membrane with different counterions. Journal of Membrane Science 2007, 295(1-2):21-27.
    183. Tian SB, Xu G: PMDA-ODA-PSX-DABSA copolymer for ionic conduction. Polymer 1995, 36(8):1555-1558.
    184. Simionescu M, Marcu M, Cazacu M, Racles C: Poly(siloxaneimide)s 2. Polycondensation of some imidic diacid chlorides with aminoalkylsiloxanes. European Polymer Journal 2002, 38(2):229-233.
    185. Chang TC, Wu KH: Characterization and degradation of some silicon-containing polyimides. Polymer Degradation and Stability 1998, 60(1):161-168.
    186. Gebel G, Moore RB: Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes. Macromolecules 2000, 33(13):4850-4855.
    187. Higuchi A, Iijima T: D.s.c. investigation of the states of water in poly(vinyl alcohol) membranes. Polymer 1985, 26(8):1207-1211.
    188. Kim DS, Park HB, Rhim JW, Moo Lee Y: Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science 2004, 240(1-2):37-48.
    189. Zawodzinski TA, Neeman M, Sillerud LO, Gottesfeld S: Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. The Journal of Physical Chemistry 1991, 95(15):6040-6044.
    190. Ren X, Gottesfeld S: Electro-osmotic Drag of Water in Poly(perfluorosulfonic acid) Membranes. Journal of The Electrochemical Society 2001, 148(1):A87-A93.
    191. Ren X, Springer TE, Zawodzinski TA, Gottesfeld S: Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements. Journal of The Electrochemical Society 2000, 147(2):466-474.
    192. Every HA, Hickner MA, McGrath JE, Zawodzinski JTA: An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. Journal of Membrane Science 2005, 250(1-2):183-188.
    193. Fujimura M, Hashimoto T, Kawai H: Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 1981, 14(5):1309-1315.
    194. Fujimura M, Hashimoto T, Kawai H: Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum. Macromolecules 1982, 15(1):136-144.
    195. Miyatake K, Chikashige Y, Higuchi E, Watanabe M: Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications. Journal of the American Chemical Society 2007, 129(13):3879-3887.
    196. Bi C, Zhang H, Zhang Y, Zhu X, Ma Y, Dai H, Xiao S: Fabrication and investigation of SiO2 supported sulfated zirconia/Nafion® self-humidifying membrane for proton exchange membrane fuel cell applications. Journal of Power Sources 2008, 184(1):197-203.
    197. Nam S-E, Kim S-O, Kang Y, Lee JW, Lee K-H: Preparation of Nafion/sulfonated poly(phenylsilsesquioxane) nanocomposite as high temperature proton exchange membranes. Journal of Membrane Science 2008, 322(2):466-474.
    198. Gui L, Zhang C, Kang S, Tan N, Xiao G, Yan D: Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes. International Journal of Hydrogen Energy 2010, 35(6):2436-2445.
    199. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE: Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews 2004, 104(10):4587-4612.
    200. Zhu X, Liang Y, Pan H, Jian X, Zhang Y: Synthesis and properties of novel H-bonded composite membranes from sulfonated poly(phthalazinone ether)s for PEMFC. Journal of Membrane Science 2008, 312(1-2):59-65.
    201. Kim YS, Hickner MA, Dong L, Pivovar BS, McGrath JE: Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability. Journal of Membrane Science 2004, 243(1-2):317-326.
    202. Zhang X, Liu S, Yin J: Modified sulfonated poly(arylene ether sulfone)-b-polybutadiene (SPAES-b-PB) membrane for fuel cell applications. Journal of Membrane Science 2006, 275(1-2):119-126.
    203. Choi YS, Kim TK, Kim EA, Joo SH, Pak C, Lee YH, Chang H, Seung D: Exfoliated Sulfonated Poly(arylene ether sulfone)–Clay Nanocomposites. Advanced Materials 2008, 20(12):2341-2344.
    204. Wen S, Gong C, Tsen W-C, Shu Y-C, Tsai F-C: Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. International Journal of Hydrogen Energy 2009, 34(21):8982-8991.
    205. Park KT, Chun JH, Kim SG, Chun B-H, Kim SH: Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for high temperature PEMFC applications. International Journal of Hydrogen Energy 2011, 36(2):1813-1819.
    206. Wu J, Cui Z, Zhao C, Li H, Zhang Y, Fu T, Na H, Xing W: High proton conductive advanced hybrid membrane based on sulfonated Si-SBA-15. International Journal of Hydrogen Energy 2009, 34(16):6740-6748.
    207. Erce S, Erdener H, Akay RG, Yücel H, Baç N, Eroglu I: Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. International Journal of Hydrogen Energy 2009, 34(10):4645-4652.
    208. Zhang Y, Fei X, Zhang G, Li H, Shao K, Zhu J, Zhao C, Liu Z, Han M, Na H: Preparation and properties of epoxy-based cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications. International Journal of Hydrogen Energy 2010, 35(12):6409-6417.
    209. Yang T: Preliminary study of SPEEK/PVA blend membranes for DMFC applications. International Journal of Hydrogen Energy 2008, 33(22):6772-6779.
    210. Tseng C-Y, Ye Y-S, Joseph J, Kao K-Y, Rick J, Huang S-L, Hwang B-J: Tuning transport properties by manipulating the phase segregation of tetramethyldisiloxane segments in modified polyimide electrolytes. Journal of Power Sources 2011, 196(7):3470-3478.
    211. Joseph J, Tseng C-Y, Pan C-J, Chen H-M, Lin C-W, Pillai KC, Hwang B-J: Growing well-defined monodispersed silica in polyimide host membranes using a surfactant assisted sol-gel process. Polymer 2010, 51(24):5663-5668.
    212. Joseph J, Tseng C-Y, Hwang B-J: Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. Journal of Power Sources, In Press, Accepted Manuscript.
    213. Sundar S, Jang W, Lee C, Shul Y, Han H: Crosslinked sulfonated polyimide networks as polymer electrolyte membranes in fuel cells. Journal of Polymer Science Part B: Polymer Physics 2005, 43(17):2370-2379.
    214. Ye Y-S, Huang Y-J, Cheng C-C, Chang F-C: A new supramolecular sulfonated polyimide for use in proton exchange membranes for fuel cells. Chemical Communications 2010, 46(40):7554-7556.
    215. Gong F, Li N, Zhang S: Synthesis and properties of novel sulfonated poly(phenylquinoxaline)s as proton exchange membranes. Polymer 2009, 50(25):6001-6008.
    216. Han M, Zhang G, Liu Z, Wang S, Li M, Zhu J, Li H, Zhang Y, Lew CM, Na H: Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry 2011, 21(7):2187-2193.
    217. Jouanneau J, Gonon L, Gebel G, Martin V, Mercier R: Synthesis and characterization of ionic conducting sulfonated polybenzimidazoles. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48(8):1732-1742.
    218. Li N, Li S, Zhang S, Wang J: Novel proton exchange membranes based on water resistant sulfonated poly[bis(benzimidazobenzisoquinolinones)]. Journal of Power Sources 2009, 187(1):67-73.
    219. Guo M, Liu B, Li L, Liu C, Wang L, Jiang Z: Preparation of sulfonated poly(ether ether ketone)s containing amino groups/epoxy resin composite membranes and their in situ crosslinking for application in fuel cells. Journal of Power Sources 2010, 195(1):11-20.
    220. Feng S, Shang Y, Wang Y, Liu G, Xie X, Dong W, Xu J, Mathur VK: Synthesis and crosslinking of hydroxyl-functionalized sulfonated poly(ether ether ketone) copolymer as candidates for proton exchange membranes. Journal of Membrane Science 2010, 352(1-2):14-21.
    221. Zhang Y, Wan Y, Zhang G, Shao K, Zhao C, Li H, Na H: Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cell application. Journal of Membrane Science 2010, 348(1-2):353-359.
    222. Ye Y-S, Yen Y-C, Cheng C-C, Chen W-Y, Tsai L-T, Chang F-C: Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes. Polymer 2009, 50(14):3196-3203.
    223. Ye Y-S, Chen W-Y, Huang Y-J, Cheng M-Y, Yen Y-C, Cheng C-C, Chang F-C: Preparation and characterization of high-durability zwitterionic crosslinked proton exchange membranes. Journal of Membrane Science 2010, 362(1-2):29-37.
    224. Zhao C, Lin H, Na H: Novel cross-linked sulfonated poly (arylene ether ketone) membranes for direct methanol fuel cell. International Journal of Hydrogen Energy 2010, 35(5):2176-2182.
    225. Kim DS, Park HB, Rhim JW, Lee YM: Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics 2005, 176(1-2):117-126.
    226. Kim DS, Guiver MD, Nam SY, Yun TI, Seo MY, Kim SJ, Hwang HS, Rhim JW: Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid). Journal of Membrane Science 2006, 281(1-2):156-162.
    227. Wang ED, Zhao TS, Yang WW: Poly (vinyl alcohol)/3-(trimethylammonium) propyl-functionalized silica hybrid membranes for alkaline direct ethanol fuel cells. International Journal of Hydrogen Energy 2010, 35(5):2183-2189.
    228. Shen C-C, Joseph J, Lin Y-C, Lin S-H, Lin C-W, Hwang BJ: Modifying microphase separation of PVA based membranes for improving proton/methanol selectivity. Desalination 2008, 233(1-3):82-87.
    229. Hwang B-J, Joseph J, Zeng Y-Z, Lin C-W, Cheng M-Y: Analysis of states of water in poly (vinyl alcohol) based DMFC membranes using FTIR and DSC. Journal of Membrane Science 2011, 369(1-2):88-95.
    230. Qiao J, Fu J, Lin R, Ma J, Liu J: Alkaline solid polymer electrolyte membranes based on structurally modified PVA/PVP with improved alkali stability. Polymer 2010, 51(21):4850-4859.
    231. Kim J, Kim B, Jung B: Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers. Journal of Membrane Science 2002, 207(1):129-137.
    232. Steele BCH, Heinzel A: Materials for fuel-cell technologies. Nature 2001, 414(6861):345-352.
    233. Peckham TJ, Holdcroft S: Structure-Morphology-Property Relationships of Non-Perfluorinated Proton-Conducting Membranes. Advanced Materials 2010, 22(42):4667-4690.
    234. Tan N, Chen Y, Xiao G, Yan D: Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes. Journal of Membrane Science 2010, 356(1-2):70-77.
    235. Marani D, D’Epifanio A, Traversa E, Miyayama M, Licoccia S: Titania Nanosheets (TNS)/Sulfonated Poly Ether Ether Ketone (SPEEK) Nanocomposite Proton Exchange Membranes for Fuel Cells†. Chemistry of Materials 2009, 22(3):1126-1133.
    236. Li X, Zhang G, Xu D, Zhao C, Na H: Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes. Journal of Power Sources 2007, 165(2):701-707.
    237. Liu B, Robertson GP, Kim D-S, Guiver MD, Hu W, Jiang Z: Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes†. Macromolecules 2007, 40(6):1934-1944.
    238. Yamaguchi T, Zhou H, Nakazawa S, Hara N: An Extremely Low Methanol Crossover and Highly Durable Aromatic Pore-Filling Electrolyte Membrane for Direct Methanol Fuel Cells. Advanced Materials 2007, 19(4):592-596.
    239. Wang H, Hao Q, Yang X, Lu L, Wang X: Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Applied Materials & Interfaces 2010, 2(3):821-828.
    240. Wu S, Yin Z, He Q, Huang X, Zhou X, Zhang H: Electrochemical Deposition of Semiconductor Oxides on Reduced Graphene Oxide-Based Flexible, Transparent, and Conductive Electrodes. The Journal of Physical Chemistry C 2010, 114(27):11816-11821.
    241. Cerveny S, Barroso-Bujans F, Alegría An, Colmenero J: Dynamics of Water Intercalated in Graphite Oxide. The Journal of Physical Chemistry C 2010, 114(6):2604-2612.
    242. Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S: Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26(9):6083-6085.
    243. Hantel MM, Kaspar T, Nesper R, Wokaun A, Kötz R: Partially reduced graphite oxide for supercapacitor electrodes: Effect of graphene layer spacing and huge specific capacitance. Electrochemistry Communications 2011, 13(1):90-92.
    244. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 2006, 16(2):155-158.
    245. Fang M, Wang K, Lu H, Yang Y, Nutt S: Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry 2009, 19(38):7098-7105.
    246. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M et al: Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science 2008, 321(5897):1815-1817.
    247. Jeong H-K, Jin MH, An KH, Lee YH: Structural Stability and Variable Dielectric Constant in Poly Sodium 4-Styrensulfonate Intercalated Graphite Oxide. The Journal of Physical Chemistry C 2009, 113(30):13060-13064.
    248. Wagner HD, Vaia RA: Nanocomposites: issues at the interface. Materials Today 2004, 7(11):38-42.
    249. Zhang Y, Shen Y, Han D, Wang Z, Song J, Niu L: Reinforcement of silica with single-walled carbon nanotubes through covalent functionalization. Journal of Materials Chemistry 2006, 16(47):4592-4597

    無法下載圖示 全文公開日期 2016/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE