簡易檢索 / 詳目顯示

研究生: 陳柏任
Po-Jen Chen
論文名稱: 建立一PDMS平面與管柱模型力學分析之研究
Creating a Study of Mechanical Analysis of PDMS Plane and Pipe String Model
指導教授: 陳品銓
Pin-Chuan Chen
黃育熙
Yu-Hsi Huang
口試委員: 徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: PDMS薄膜膨脹變化PDMS中空管柱模型膨脹變化影像分析量測系統ANSYS模擬分析軟體
外文關鍵詞: PDMS Plane Expansion Change, PDMS Hollow Model Expansion Change, Image Analysis Measurement System, ANSYS Analysis Software
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腹部主動脈瘤常見於高危險群血管疾病患者,由於血管瘤大多均無症狀,往往因動脈血管管壁病變彈性疲乏,血管向外膨脹隆起後突然破裂,病患可能因突發性大出血而死亡。本研究利用現有力學分析方法分析黏彈材料之變形,從平面薄膜膨脹變化,再到立體中空管柱模型膨脹變化,最後可應用至腹主動脈瘤模型上作為醫生手術前之模擬,而材質均選用PDMS黏彈性材料。在量測方法上,使用數位影像分析量測系統,屬於非接觸式表面形變量測技術,觀察不同厚度之薄膜與管柱模型之膨脹變形量、應變、剪力…等,結合CCD(Charge-Coupled Device)影像捕捉與DIC(Digital Image Correlation)演算法,使得3D表面形變的量測能在最快時間內完成。而我們會使用簽字筆或壓克力顏料搭配模板在PDMS表面上做標記,相機拍攝擷取相片後透過Python與Matlab程式語言進行影像分析並觀察分析結果,透過ANSYS流固耦合分析軟體進行實驗結果之驗證。
    本研究之製程中將透過薄膜模具設計、管柱模型內外模具設計、利用熔融擠製型3D列印機製作出內外模具、蒸氣表面拋光及後處理、彈性材料之澆注及脫模技術,最後製作出可控制不同厚度的PDMS模型。從實驗結果得知,第一組實驗為製作三種不同厚度之PDMS薄膜,分別為1 mm、1.5 mm 與 2 mm,透過沉水馬達將水灌入流道內使薄膜膨脹,相機拍攝擷取影像分析結果並搭配分析軟體驗證實驗結果之準確度。在流量300 L/H實驗與模擬結果,大約落在0.2 mm以內,因設定流量較小,薄膜經水流過後晃動情形也較小,因此實驗與模擬結果差值較小。而越薄之PDMS灌入1000 L/H之流量實驗與模擬結果差值較大,大約落在0.5 mm左右,因PDMS為黏彈性材料,灌入水時會有不穩定情形之發生。
    接著第二組實驗為製作一均質厚度之PDMS管柱模型,在壁厚1.5 mm之模型灌入水之流量1000 L/H,使用方格角點判斷位移方式,Y方向之變形量與模擬結果數值相差較大,因PDMS本身在實驗過程中無法將中間固定,只能在兩端用固定架方式固定,會因重力問題導致下沉現象發生。在壁厚2 mm之模型灌入水之流量1000 L/H,使用方格角點判斷位移方式,在X方向與Y方向之變形量與模擬結果數值相差較大,因PDMS本身材質較厚,在沉水馬達灌入水之最大流量時,管柱模型膨脹並不明顯,因此在擷取影像分析結果時較難點取變形前後之角點位置。因實驗過程中,灌水進入流道或管中皆會有振動問題,目前無法解決,因此結果數值皆為參考。


    Abdominal aortic aneurysms are common in patients with high-risk groups of vascular diseases. Since most hemangiomas are asymptomatic, they are often caused by the elasticity of the arterial vessel wall and the sudden rupture of the vessel after expansion and bulge. The patient may die due to sudden heavy bleeding. . This study uses the existing mechanical analysis methods to analyze the deformation of viscoelastic materials, from the expansion of the flat membrane to the expansion of the three-dimensional hollow tubular model, and finally can be applied to the abdominal aortic aneurysm model as a simulation before the doctor's operation, and the material All use PDMS viscoelastic materials. In the measurement method, the digital image analysis and measurement system is a non-contact surface deformation measurement technology to observe the expansion deformation, strain, shear force, etc. of the film and pipe string models of different thicknesses, combined with CCD (Charge Coupled Device) image capture and DIC (Digital Image Correlation) algorithms enable the measurement of 3D surface deformation to be completed in the fastest time. We will use a signature pen or acrylic paint with a template to mark on the PDMS surface. After the camera captures the photo, we will use Python and Matlab programming language to analyze the image and observe the analysis results, and use the ANSYS fluid-structure coupling analysis software to perform the experimental results. The verification.
    In the process of this research, the final production will be made through film mold design, pipe string model inner and outer mold design, melt extrusion type 3D printing mechanism to make inner and outer molds, steam surface polishing and post-treatment, and elastic material casting and demoulding technology. A PDMS model that can control different thicknesses. According to the experimental results, the first set of experiments was to make three different thicknesses of PDMS film, 1 mm, 1.5 mm and 2 mm, respectively. Water was poured into the flow channel through a submerged motor to expand the film. The camera captured the image for analysis. The results are combined with analysis software to verify the accuracy of the experimental results. The experimental and simulation results at a flow rate of 300 L/H are approximately within 0.2 mm. Because the set flow rate is small, the sloshing of the film after water flows is also small, so the difference between the experimental and simulation results is small. The difference between the flow rate experiment and simulation results of the thinner PDMS poured into 1000 L/H is larger, which is about 0.5 mm. Because PDMS is a viscoelastic material, there will be instability when poured into water.
    Then the second set of experiments is to make a PDMS pipe string model with a uniform thickness. The model with a wall thickness of 1.5 mm is filled with water at a flow rate of 1000 L/H. The corner points of the grid are used to determine the displacement method, the deformation in the Y direction and the simulation result value. The difference is large, because the PDMS itself cannot fix the middle during the experiment, it can only be fixed with a fixing frame at both ends, which will cause sinking due to gravity problems. In the model with a wall thickness of 2 mm, the water flow rate is 1000 L/H, and the displacement method is judged by the corner points of the grid. The deformation amount in the X direction and the Y direction differs greatly from the simulation result value. Because the PDMS itself is thicker, When the maximum flow rate of the submerged motor is poured into the water, the expansion of the pipe string model is not obvious. Therefore, it is difficult to obtain the position of the corner points before and after the deformation when capturing the image analysis results. During the experiment, there will be vibration problems when irrigation water enters the flow channel or pipe, which cannot be solved at present, so the result values are for reference.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 X 表目錄 XVIII 第一章 前言 1 1.1研究背景 1 1.2研究動機與目的 3 1.3研究方法 4 1.4論文架構 7 第二章 文獻回顧 10 2.1黏彈性材料測試方法相關文獻 10 2.1.1拉伸試驗 10 2.1.2奈米壓痕 14 2.1.3迴轉式動態流變儀 17 2.2量測方法相關文獻 19 2.2.1非接觸式量測方法 19 2.2.2管狀材料膨脹量測方法 23 2.2.3彈性材料接觸式量測方法 25 第三章 PDMS薄膜製程與PMMA流道銑削製程 27 3.1 PDMS薄膜之模具製程 27 3.1.1設計PDMS薄膜之模具 27 3.1.2建立PDMS薄膜之模具 29 3.1.3操作與使用方法 29 3.1.4製造PDMS薄膜之模具 32 3.1.5 PDMS澆鑄翻模製程 32 3.2 PMMA流道之模具製程 35 3.2.1設計PMMA之流道 35 3.2.2建立PMMA之流道 36 3.2.3製造壓克力流道 36 3.3 PDMS與PMMA黏合製程 36 3.3.1氧電漿黏合製程 36 第四章 PDMS中空管柱模型製程 39 4.1模具設計 39 4.1.1內模具設計 39 4.1.2外模具設計 40 4.2 3D列印模具製作 40 4.2.1 3D列印簡介 41 4.2.2 3D列印參數值設定 42 4.2.3 黏附平台設定 42 4.2.4 3D列印製作管柱模型 44 4.3 PDMS澆鑄翻模製程 45 4.3.1模具表面拋光製程 46 4.3.2模具澆鑄製程 48 4.4內模具溶解製程 51 第五章 研究設備 53 5.1製程設備、材料及軟體 53 5.2量測設備及軟體 59 第六章 實驗方法 61 6.1 PDMS薄膜膨脹實驗 61 6.1.1 實驗架構 61 6.1.2 PDMS薄膜打點標記方式 62 6.2薄膜膨脹之流固耦合模擬分析 63 6.2.1流體模型 63 6.2.2固體模型 66 6.2.3流固耦合模擬 68 6.3中空管柱模型膨脹實驗 69 6.3.1實驗架構 69 6.3.2PDMS標記方式 70 6.4管柱模型膨脹之流固耦合模擬分析 71 6.4.1流體模型 71 6.4.2固體模型 74 6.4.3流固耦合模擬 75 第七章 實驗結果與討論 77 7.1 ANSYS流固耦合模擬分析結果 77 7.1.1 厚度1 mm之PDMS薄膜膨脹結果 77 7.1.2 厚度1.5 mm之PDMS薄膜膨脹結果 78 7.1.3 厚度2 mm之PDMS薄膜膨脹結果 79 7.1.4 壁厚1.5 mm之PDMS中空管柱模型 80 7.1.5 壁厚2 mm之PDMS中空管柱模型 80 7.2相機拍攝結果分析 81 7.2.1 厚度1 mm之PDMS薄膜膨脹結果 82 7.2.2 厚度1.5 mm之PDMS薄膜膨脹結果 84 7.2.3 厚度2 mm之PDMS薄膜膨脹結果 85 7.2.4薄膜膨脹實驗結果與模擬結果比較圖 86 7.2.5 壁厚1.5 mm之PDMS管柱模型膨脹結果 87 7.2.6 壁厚1.5 mm管柱結構膨脹實驗結果與模擬結果比較圖 93 7.2.7 壁厚2 mm之PDMS管柱模型膨脹結果 94 7.2.8 壁厚2 mm管柱結構膨脹實驗結果與模擬結果比較圖 100 第八章 結論與未來展望 101 8.1結論 101 8.2未來展望 105 參考文獻 107

    [1] 陳翊菁。利用非傳統機械製程建構專業醫療教育訓練之人工動脈瘤模型。國立臺灣科技大學機械工程系碩士論文,台北市。(2019)
    [2] 周敬展。利用3D列印模具和超音波溶解技術來製作全透明且非平面微流道晶片。國立臺灣科技大學機械工程系碩士論文,台北市。(2017)
    [3] "家庭醫學與基層醫療. "
    https://www.tafm.org.tw/ehctafm/s/w/ebook/people_other/journalContent/850
    [4] Raghavan, Madhavan L., Marshall W. Webster, and David A. Vorp. "Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model." Annals of biomedical engineering 24.5 (1996): 573-582.
    [5] Xiong, Jiang, et al. "Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta." Journal of vascular surgery 48.1 (2008): 189-195.
    [6] Motra, Hem Bahadur, Jörg Hildebrand, and Andrea Dimmig-Osburg. "Assessment of strain measurement techniques to characterise mechanical properties of structural steel." Engineering Science and Technology, an International Journal 17.4 (2014): 260-269.
    [7] Vriend, Nathalie M., and Alexander P. Kren. "Determination of the viscoelastic properties of elastomeric materials by the dynamic indentation method." Polymer Testing 23.4 (2004): 369-375.
    [8] Wang, Yuemin, et al. "Measurement of viscoelastic properties for polymers by nanoindentation." Polymer Testing 83 (2020): 106353.
    [9] Ferry, John D. Viscoelastic properties of polymers. John Wiley & Sons, 1980.
    [10] Mott, Peter H., John R. Dorgan, and C. M. Roland. "The bulk modulus and Poisson's ratio of “incompressible” materials." Journal of Sound and Vibration 312.4-5 (2008): 572-575.
    [11] Lin, Der-Song, et al. "Encapsulation of capacitive micromachined ultrasonic transducers using viscoelastic polymer." Journal of Microelectromechanical systems 19.6 (2010): 1341-1351.
    [12] Bang, Kyukwon, and H-Y. Jeong. "Combining stress relaxation and rheometer test results in modeling a polyurethane stopper." Journal of mechanical science and technology 26.6 (2012): 1849-1855.
    [13] 傅志红、喻堅與魏靈嬌。 "聚碳酸酯的應力鬆弛實驗級數據處理分析" 塑料工業42.6 (2014): 89-92.
    [14] Airey, Gordon D., Behzad Rahimzadeh, and Andrew C. Collop. "Viscoelastic linearity limits for bituminous materials." Materials and Structures 36.10 (2003): 643-647.
    [15] Ahn, Bummo, and Jung Kim. "Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations." Medical image analysis 14.2 (2010): 138-148.
    [16] Li, Yuhui, et al. "Non-contact tensile viscoelastic characterization of microscale biological materials." Acta Mechanica Sinica 34.3 (2018): 589-599.
    [17] Hwang, Yeong-Maw, Yi-Kai Lin, and Taylan Altan. "Evaluation of tubular materials by a hydraulic bulge test." International Journal of Machine Tools and Manufacture 47.2 (2007): 343-351.
    [18] Matsuzaki, Ryosuke, et al. "Rubber-based strain sensor fabricated using photolithography for intelligent tires." Sensors and Actuators A: Physical 148.1 (2008): 1-9
    [19] Hupert, Mateusz L., et al. "High-precision micromilling for low-cost fabrication of metal mold masters." Microfluidics, BioMEMS, and Medical Microsystems IV. Vol. 6112. International Society for Optics and Photonics, 2006.
    [20] Tang, L., & Lee, N. Y. (2010). "A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. " Lab on a Chip, 10(10), 1274-1280.
    [21] https://rigid.ink/blogs/news/acetone-vapor-smoothing
    [22] He, Yong, Guang-huai Xue, and Jian-zhong Fu. "Fabrication of low cost soft tissue prostheses with the desktop 3D printer." Scientific reports 4 (2014): 6973.
    [23] Lee, Jessamine Ng, Cheolmin Park, and George M. Whitesides. "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices." Analytical chemistry 75.23 (2003): 6544-6554.
    [24] 張仕翰。積層製造結構於軟硬異質層疊材料之動態特性。國立臺灣科技大學機械工程系碩士論文,台北市。(2019)
    [25] Guillerm, Maxime, et al. "Characterization and selection of PDMS solvents for the absorption and biodegradation of hydrophobic VOCs." Journal of Chemical Technology & Biotechnology 91.6 (2016): 1923-1927.
    [26] Yu, Ying-Song, and Ya-Pu Zhao. "Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney–Rivlin and linear elastic constitutive models." Journal of colloid and interface science 332.2 (2009): 467-476.
    [27] Shang, Eric K., et al. "Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth." Journal of vascular surgery 61.1 (2015): 217-223.
    [28] 黃明哲。空間解析率Spatial resolution。國家教育研究院,台北市。(2003)
    [29] 藍翔耀。材料力學 - 應力分析。(2015)
    [30] "ANSYS Fluent 教學. " https://www.youtube.com/playlist?list=PLdl8TQhuTS8WYiqnhmRPTgEaFWY4wXmI-
    [31] 陳亮達。利用可膨脹之彈性體及微混流器來製造即時可調式微透鏡陣列。國立臺灣科技大學機械工程系碩士論文,台北市。(2018)
    [32] 高子殷。高分子檢測 - 拉伸試驗。(2011)
    [33] "奈米壓痕儀. "
    https://sppic.ntust.edu.tw/p/404-1058-66359.php?Lang=zh-tw
    [34] 陳寅恪。流變學 - 迴轉式動態流變儀。維基百科。(2020)
    [35] 尤如瑾。積層製造(3D列印)技術之機會與挑戰(上)。工研院產經中心,台北市。(2013)
    [36] ANSYS FSI 流固耦合分析(Fluent模組)。虎門科技股份有限公司,新北市。(2020)

    無法下載圖示 全文公開日期 2026/08/19 (校內網路)
    全文公開日期 2026/08/19 (校外網路)
    全文公開日期 2026/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE