簡易檢索 / 詳目顯示

研究生: Gita Novian Hermana
Gita Novian Hermana
論文名稱: Prediction of the Metallic Glass Formation Regions for the Cu-Ti-Zr Ternary System by the Calculation of Phase Diagram (CALPHAD) Method
Prediction of the Metallic Glass Formation Regions for the Cu-Ti-Zr Ternary System by the Calculation of Phase Diagram (CALPHAD) Method
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 朱瑾
Jinn P. Chu
高振宏
C. Robert Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 108
中文關鍵詞: Bulk metallic glassCu-Ti-Zr ternary systemThermodynamic assessmentAmorphous regionPhase equilibria
外文關鍵詞: Bulk metallic glass, Cu-Ti-Zr ternary system, Thermodynamic assessment, Amorphous region, Phase equilibria
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Copper based amorphous alloy have a great attention in the recent years because of its high glass forming ability (GFA), lower cost, and good mechanical properties. Cu-Zr amorphous alloys are quite popular among the other amorphous alloys. Titanium (Ti) can be added to substitute some Zirconium (Zr) elements in Cu-Zr amorphous alloys to improve the mechanical properties as well as the glass forming ability.
    In this study focused on the calculation of phase diagram (CALPHAD) to predict the metallic glass region. In order to re-assessed the thermodynamic parameter, the experimental investigation of phase equilibria in Cu-Ti-Zr ternary system should be understand well. The phase equilibria of the Cu-Ti-Zr have made by arc melting method and annealed at 703 oC for 1440 hours and then quenched in icy water. The isothermal section have composed of 15 single phases which include the ternary phase-Cu2TiZr, 17 two-phases regions, and 17 three-phases regions, respectively. The CuTi2-CuZr2 phases form continuous solid solution and the ternary phases located in the central portion of this isothermal section.
    The re-assessment of Cu-Ti-Zr ternary phase diagram have established well. The thermodynamic parameters were used for predicting the metallic glass regions by combined the supressed intermetallic compounds (IMCs) phases, liquid miscibility gap, and spinodal curve. The predicted region have consistency with the experimental data and experimental result in bulk metallic glass alloys which done in this study.


    Copper based amorphous alloy have a great attention in the recent years because of its high glass forming ability (GFA), lower cost, and good mechanical properties. Cu-Zr amorphous alloys are quite popular among the other amorphous alloys. Titanium (Ti) can be added to substitute some Zirconium (Zr) elements in Cu-Zr amorphous alloys to improve the mechanical properties as well as the glass forming ability.
    In this study focused on the calculation of phase diagram (CALPHAD) to predict the metallic glass region. In order to re-assessed the thermodynamic parameter, the experimental investigation of phase equilibria in Cu-Ti-Zr ternary system should be understand well. The phase equilibria of the Cu-Ti-Zr have made by arc melting method and annealed at 703 oC for 1440 hours and then quenched in icy water. The isothermal section have composed of 15 single phases which include the ternary phase-Cu2TiZr, 17 two-phases regions, and 17 three-phases regions, respectively. The CuTi2-CuZr2 phases form continuous solid solution and the ternary phases located in the central portion of this isothermal section.
    The re-assessment of Cu-Ti-Zr ternary phase diagram have established well. The thermodynamic parameters were used for predicting the metallic glass regions by combined the supressed intermetallic compounds (IMCs) phases, liquid miscibility gap, and spinodal curve. The predicted region have consistency with the experimental data and experimental result in bulk metallic glass alloys which done in this study.

    Abstract I List of Figure V List of Table IX Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 Metallic Glasses 2 2.1.1 Development of Metallic Glasses 2 2.1.2 Properties of Metallic Glasses 2 2.1.3 Cu-Zr-Ti Amorphous Alloys 9 2.2 Phase Diagrams 10 2.2.1 Binary System 12 2.2.2 Cu-Ti-Zr Phase Equilibria 15 2.2.3 Cu-Ti-Zr Thermodynamic Assessment................................................18 Chapter 3 Experimental 23 3.1 Phase Diagram and Metallic Glass 23 3.1.1 Isothermal Phase Diagram 24 3.1.2 Cu-Ti-Zr Bulk Metallic Glasses 27 3.2 Calculation of Phase Diagram 29 3.2.1 CALPHAD Method 29 3.2.2 Thermodynamic modeling 30 Chapter 4 Results and Discussion 38 4.1 Cu-Ti-Zr experimental ternary phase diagram 38 4.2 Cu-Ti-Zr Calculated Ternary Phase Diagram 59 4.3 Prediction of Bulk Metallic Glasses 70 4.4 Metallic Glasses of Cu-Zr-Ti Ternary System 78 Chapter 5 Conclusion 82 Reference 83 Appendix 90

    1. Klement, W., Willens, R.H., and Duwez, P.O.L., Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960. 187(4740): p. 869-870.
    2. Chen, H.S., and Turnbull, D., Formation, stability, and structure of Palladium-Silicon based alloy glasses. Acta Metallurgica, 1969. 17(8): p. 1021-1031.
    3. Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
    4. Zhang, T., Inoue, A., and Masumoto, T., Amorphous Zr-Al-Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100-K. Materials Transactions, JIM, 1991. 32(11): p. 1005-1010.
    5. Inoue, A., Zhang, T., and Masumoto, T., Glass forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156-158: p. 473-480.
    6. Telford, M., The case of bulk metallic glass. Materials Today, 2004. 7: p. 36-43.
    7. Inoue, A., Stabillization of metallic supercooled liquid and bulk amorphous alloys. Acta Materials, 2000. 48(1): p. 279-306.
    8. Inoue, A., Bulk amorphous alloys: preparation and fundamental characteristics. Materials Science Foundation. 1998, Zurich, Swiss: Trans Tech Publications. 116.
    9. Inoue, A., Shibata, T., and Zhang, T., Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys. Materials Transactions, JIM, 1995. 36(12): p. 1420-1426.
    10. Inoue, A., High-strength bulk amorphous-alloys with low critical cooling rates. Materials Transactions, JIM, 1995. 36(7): p. 866-875.
    11. Suryanaraya, C., and Inoue, A., Bulk metallic glasses. 2011, New York: CRC Press.
    12. Bing, Y., Yong, D., and Yong, L., Recent progress in criterions for glass forming ability. Transactions of Nonferrous Metals Society of China, 2009. 19(1): p. 78-84.
    13. Tang, C., and Zhou, H., Thermodynamics - physical chemistry of aqueous systems. 2011. InTech.
    14. Turnbull, D., Under what conditions can a glass be formed?. Contemporary Physics, 1969. 10(5): p. 473-488.
    15. Lu, Z.P., and Liu, C.T., A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
    16. Ediger, M.D., Angell C.A., and Nagel S.R., Supercooled liquids and glasses. Journal of Physical Chemistry, 1996. 100(31): p. 13200-13212.
    17. Chen, H.S., and Turnbull, D., Evidence of a glass-liquid transition in a Gold-Germanium-Silicon alloy. Journal of Chemical Physics, 1968. 48(6): p. 2560-2571.
    18. Li, Y., A relationship between glass-forming ability and reduced glass transition temperature near eutectic composition. Materials Transactions, 2001. 42(4): p. 556-561.
    19. Johnson, W.L., Bulk glass-forming metallic alloys: Science and Technology. MRS Bulletin, 1999. 24(10): p. 42-56.
    20. Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Materialia, 2001. 49(14): p. 2645-2652.
    21. Dai, C.L., Guo, H., Li, Y., and Xu, J., A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction. Journal of Non-Crystalline Solids, 2008. 354(31): p. 3659-3665.
    22. Men, H., Pang, S.J., and Zhang, T., Glass-forming ability and mechanical properties of Cu50Zr50−xTix alloys. Materials Science and Engineering: A, 2005. 408(1-2): p. 326-329.
    23. Cheung, T.L. and Shek, C.H., Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. Journal of alloys and compounds, 2007. 434: p.71-74.
    24. Jia, P., Guo, H., Li, Y., Xu, J., and Ma, E., A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia, 2006. 54(12): p.2165-2168.
    25. Xu, D., Duan, G., and Johnson, W.L., Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Physical review letters, 2004. 92(24): p.245504.
    26. Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C., Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Materialia, 2006. 54(2): p.349-355.
    27. Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C., Enhancement of the glass forming ability of Cu− Zr− Al alloys by Ag addition. Metals and materials International, 2004. 10(6): p.575-579.
    28. Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E., Bulk metallic glass formation in the binary Cu–Zr system. Applied Physics Letters, 2004. 84(20): p.4029-4031.
    29. Tang, M.B., Zhao, D. Q., Pan, M. X., and Wang, W. H., Binary Cu-Zr bulk metallic glasses. Chinese Physics Letters, 2004. 21(5): p. 901-903.
    30. Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J., “Work-hardenable” ductile bulk metallic glass. Physical Review Letters, 2004. 94(20): p.205501.
    31. Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q., Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu 50 Zr 50. Scripta materialia, 2006. 54(6): p.1145-1149.
    32. Takeuchi, A. and Inoue, A., Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions, 2005. 46(12): p.2817-2829.
    33. Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K., Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys. Materials Transactions, 2001. 42(6): p.1149-1151.
    34. Lin, X.H. and Johnson, W.L., Formation of Ti–Zr–Cu–Ni bulk metallic glasses. Journal of Applied Physics, 1995. 78(11): p.6514-6519.
    35. Callister, W.D. and Wiley, J., Material science and engineering: an introduction. 2007, USA: John Willey & Sons, Inc. 255.
    36. Rhines, F.N., Phase diagrams in metallurgy: their development and application. Metallurgy and metallurgical engineering series. 1965, New York,: McGraw-Hill. 340.
    37. Askeland, D.R. and Wright, W.J., The science and engineering of materials seventh edition. 2015, Boston: Cengange Learning.
    38. Smith, J.F., Chapter one - introduction to phase diagrams A2 - Zhao, J.C, in methods for phase diagram determination. 2007, Oxford: Elsevier Science Ltd. p. 1-21.
    39. Murray, J., Phase Diagrams of Binary Titanium Alloys. 1987, Metals Park, Ohio: ASM International.
    40. Karlsson, N., An x-ray study of the phases in the copper-titanium system. J Inst Met, 1951. 79: p. 391-405.
    41. Canale, P. and Servant, C., Thermodynamic Assessment of the Cu–Ti System Taking into Account the New Stable Phase CuTi3. Zeitschrift für Metallkunde, 2002. 93(4): p. 273-276.
    42. Klotz, U.E., Liu, C., Uggowitzer, P.J., and Löffler, J.F., Experimental investigation of the Cu–Ti–Zr system at 800 °C. Intermetallics, 2007. 15(12): p. 1666-1671.
    43. Wang, J., Liu, C., Leinenbach, C., Klotz, U.E., Uggowitzer, P.J., and Löffler, J.F., Experimental investigation and thermodynamic assessment of the Cu–Sn–Ti ternary system. Calphad, 2011. 35(1): p. 82-94.
    44. Murray, J.L., The Cu−Ti (Copper-Titanium) system. Bulletin of Alloy Phase Diagrams, 1983. 4(1): p. 81-95.
    45. Saunders, N., Phase diagram calculations for eight glass forming alloy systems. Calphad, 1985. 9(4): p. 297-309.
    46. Kumar, K.H., Ansara, I., Wollants, P., and Delaey, L., Thermodynamic optimisation of the Cu-Ti system. Zeitschrift für Metallkunde, 1996. 87(8): p. 666-672.
    47. Turchanin, M.A., Agraval, P.G., and Abdulov, A.R., Thermodynamic assessment of the Cu-Ti-Zr system. I. Cu-Ti system. Powder Metallurgy and Metal Ceramics, 2008. 47(5): p. 344-360.
    48. Kumar, K.H., Wollants, P., and Delacy, L., Thermodynamic assessment of the Ti-Zr system and calculation of the Nb-Ti-Zr phase diagram. Journal of Alloys and Compounds, 1994. 206(1): p. 121-127.
    49. Kneller, E., Khan, Y., and Gorres, U., Alloy system copper-zirconium. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1986. 77(1): p. 43-48.
    50. Arias, D. and Abriata, J.P., Cu-Zr (Copper-Zirconium). Journal of Phase Equilibria, 1990. 11(5): p. 452-459.
    51. Abe, T., Shimono, M., Ode, M., and Onodera, H., Thermodynamic modeling of the undercooled liquid in the Cu–Zr system. Acta Materialia, 2006. 54(4): p. 909-915.
    52. Wang, N., Li, C., Du, Z., Wang, F., and Zhang, W., The thermodynamic re-assessment of the Cu–Zr system. Calphad, 2006. 30(4): p. 461-469.
    53. Gierlotka, W., Zhang, K.C., and Chang, Y.P., Thermodynamic description of the binary Cu–Zr system. Journal of Alloys and Compounds, 2011. 509(33): p. 8313-8318.
    54. Hsiao, H.M., Liang, S.M., Schmid-Fetzer, R., and Yen, Y.W., ‘Thermodynamic assessment of the Ag-Zr and Cu-Zr binary systems. Calphad, 2016. 55, Part 2: p. 77-87.
    55. Woychik, C.G. and Massalski, T.B., Phase diagram relationships in the system Cu-Ti-Zr. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1988. 79(3): p. 149-153.
    56. Massalski, T.B., Woychik, C.G., and Dutkiewicz, J., Solidification structures in rapidly quenched Cu-Ti-Zr alloys. Metallurgical Transactions A, 1988. 19(7): p. 1853-1860.
    57. Raman, A. and Schubert, K., The occurence of Zr2Cu and Cr2Al-type intermetallic compounds. Z. Metkd, 1964. 55: 798-804.
    58. Concustell, A., Révész, Á., Surinach, S., Varga, L.K., Heunen, G., and Baró, M.D., Microstructural evolution during decomposition and crystallization of the Cu60 Zr 20 Ti 20 amorphous alloy. Journal of materials research, 2004. 19(02): pp.505-512.
    59. Chiang, W.R., Hsieh, K.C., Chang, Y.A., Fan, G., Qiao, D., Jiang, F., and Liaw, P.K., Phase Equilibrium in the Cu-Ti-Zr System at 800 oC. Materials Transactions, 2007. 48(7): p. 1631-1634.
    60. Qin, P.G., Wang, H., Zhang, L.G., Liu, H.S., and Jin, Z.P., The isothermal section of the Cu–Ti–Zr system at 1023 K measured with diffusion-triple approach. Materials Science and Engineering: A, 2008. 476(1–2): p. 83-88.
    61. Arroyave, R., Eagar, T.W., and Kaufman, L., Thermodynamic assessment of the Cu–Ti–Zr system. Journal of Alloys and Compounds, 2003. 351(1–2): p. 158-170.
    62. Turchanin, M.A., Velikanova, T.Y., Agraval, P.G., Abdulov, A.R., and Dreval, Thermodynamic assessment of the Cu-Ti-Zr system. III. Cu-Ti-Zr system. Powder Metallurgy and Metal Ceramics, 2008. 47(9): p. 586-606.
    63. Van Laar, J., Melting or solidification curves in binary system. Z Phys Chem, 1908. 63: p. 216.
    64. Wagner, C., Mellgren, S., and Westbrook, J.H., Thermodynamics of alloys. 1952, Addison-Wesley Press.
    65. Kaufman, L. and Bernstein, H., Computer calculation of phase diagrams. With special reference to refractory metals. 1970, New York: Academic Press Inc.
    66. Spencer, P.J., A brief history of CALPHAD. Calphad, 2008. 32(1): p. 1-8.
    67. Hsiao, H.M, Prediction of the metallic glass formation regions for the Ag-Al-Cu-Zr quartenary system by the calculation of phase diagram (CALPHAD) method. 2015. Doctoral dissertation.
    68. Lukas, H.L., Fries, S.G., and Sundman, B., Computational thermodynamics: the Calphad method. Vol. 131. 2007, Cambridge: Cambridge university press Cambridge.
    69. Dinsdale, A.T., SGTE data for pure elements. Calphad, 1991. 15(4): p. 317-425.
    70. Redlich, O. and Kister, A.T., Thermodynamics of Nonelectrolyte Solutions - x-y-t relations in a Binary System. Industrial & Engineering Chemistry, 1948. 40(2): p. 341-345.
    71. Chebotnikov, V. and Molokanov, V., Structure and properties of alloys of Ti 2 Cu-Zr 2 Cu cross-section of Ti-Zr-Cu system in amorphous and crystalline states. Neorganicheskie Materialy, 1990. 26(5): p. 960-964.
    72. Colinet, C., Pasturel, A., and Buschow, K.H.J., Enthalpies of formation of Ti-Cu intermetallic and amorphous phases. Journal of alloys and compounds, 1997. 247(1): p. 15-19.
    73. Zeng, K.J., Hämäläinen, M., and Lukas, H.L., A new thermodynamic description of the Cu-Zr system. Journal of phase equilibria, 1994. 15(6): p. 577-586.
    74. Yan, X., Chen, X.Q., Grytsiv, A., Rogl, P., Podloucky, R., Pomjakushin, V., Schmidt, H., and Giester, G., Crystal structure, phase stability and elastic properties of the Laves phase ZrTiCu 2. Intermetallics, 2008. 16(5): p. 651-657.
    75. Chen, S.L., Daniel, S., Zhang, F., Chang, Y.A., Yan, X.Y., Xie, F.Y., Schmid-Fetzer, R., and Oates, W.A., The PANDAT software package and its applications. Calphad, 2002. 26(2): p. 175-188.
    76. Wang, G., Pauly, S., Gorantla, S., Mattern, N., and Eckert, J., Plastic Flow of a Cu50Zr45Ti5 Bulk Metallic Glass Composite. Journal of Materials Science & Technology, 2014. 30(6): p. 609-615.
    77. Wang, Q., Qiang, J., Wang, Y., Xia, J., and Dong, C., Bulk metallic glass formation in Cu–Zr–Ti ternary system. Journal of Non-Crystalline Solids, 2007. 353(32): p. 3425-3428.
    78. Pauly, S., Das, J., Mattern, N., Kim, D.H., and Eckert, J., Phase formation and thermal stability in Cu–Zr–Ti (Al) metallic glasses. Intermetallics, 2009. 17(6): p. 453-462.
    79. Kuo, Y.K., Sivakumar, K.M., Su, C.A., Ku, C.N., Lin, S.T., Kaiser, A.B., Qiang, J.B., Wang, Q., and Dong, C., Measurement of low-temperature transport properties of Cu-based Cu-Zr-Ti bulk metallic glass. Physical Review B, 2006. 74(1): p. 014208.
    80. Pan, Y., Zeng, Y., Jing, L., Zhang, L., and Pi, J., Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses. Materials & Design, 2014. 55: p. 773-777.
    81. Yinxiao, W., Formation of metallic glasses near intermetallics in Zr-Cu and Zr-Cu-Ti systems. 2012.
    82. Kang, D.H. and Jung, I.H., Critical thermodynamic evaluation and optimization of the Ag–Zr, Cu–Zr and Ag–Cu–Zr systems and its applications to amorphous Cu–Zr–Ag alloys. Intermetallics, 2010. 18(5): p. 815-833.
    83. Sridar, S., Kumar, R., and Kumar, K.H., Thermodynamic modelling of Ti-Zr-N system. Calphad, 2017. 56: p. 102-107.
    84. Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., and Hono, K., In situ formed two-phase metallic glass with surface fractal microstructure. Acta Materialia, 2004. 52(8): p. 2441-2448.
    85. Cao, Q.P., Li, J.F., Zhou, Y.H., Horsewell, A., and Jiang, J.Z., Effect of rolling deformation on the microstructure of bulk Cu 60 Zr 20 Ti 20 metallic glass and its crystallization. Acta materialia, 2006. 54(16): p. 4373-4383.
    86. Kim, D.H., Kim, W.T., Park, E.S., Mattern, N., and Eckert, J., Phase separation in metallic glasses. Progress in materials science, 2013. 58(8): p. 1103-1172.
    87. Cao, Q., Li, J., Zhou, Y., and Jiang, J., Mechanically driven phase separation and corresponding microhardness change in Cu 60 Zr 20 Ti 20 bulk metallic glass. Applied Physics Letters, 2005. 86(8): p. 081913.
    88. Mattern, N., Kühn, U., Concustell, A., Schöps, A., Baro, M.D., and Eckert, J., Phase separation and crystallization in Cu-Zr metallic glasses. Materials transactions, 2007. 48(7): p. 1639-1643.

    QR CODE