簡易檢索 / 詳目顯示

研究生: 陳姿澐
Tzu-Yun Chen
論文名稱: 基於平板變壓器的等效電路建模與模擬
Modeling and Simulation of the Equivalent Circuit of Planar Transformer
指導教授: 劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
羅一峰
Yi-Feng Luo
口試委員: 劉益華
Yi-Hua Liu
邱煌仁
Huang-Jen Chiu
羅一峰
Yi-Feng Luo
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 79
中文關鍵詞: 變壓器等效電路平板變壓器返馳式轉換器
外文關鍵詞: Transformer equivalent circuit, planar transformer, flyback converter
相關次數: 點閱:20207下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當前電力電子領域追求轉換器具有高功率密度以及體積小型化,因此提高操作頻率以實現小型化為現今的設計趨勢。本論文旨在探討平板變壓器在高頻操作時的特性,因此設計三種不同排列的繞組,並使用S參數來獲得變壓器的頻率響應與物理特性。研究中採用自適應建模法和預設等效電路建模法,分別建立不同的變壓器等效模型。自適應建模法根據實際測量數據動態調整模型參數,提高模型的準確性和可靠性,但是計算過程較為複雜,計算出來的等效變壓器電路非常龐大,且物理意義不直觀。預設等效電路建模法則是基於既有理論和經驗建立模型,物理意義明確但是模型階數較低,在高頻的部分,無法完全符合實際的情況。本論文基於提出之兩種建模法分析不同繞組排列的平板變壓器。並採用返馳式轉換器作為實驗平台,將變壓器等效模型導入電路模型中,用以驗證等效電路與實際電路的特性是否相符。最終實驗結果顯示,本論文所建立之變壓器等效模型在返馳式轉換器中具有與實際電路相符的頻率響應以及動態特性,證實等效模型具有準確性和有效性。


In power electronics, there is a pursuit for high power density and miniaturized volume, making high-frequency operation a design trend. This thesis investigates the characteristics of planar transformers under high-frequency conditions, designing three different winding configura-tions and using scattering parameters to obtain the transformer's frequency response and physical characteristics. The study uses adaptive modeling and predefined equivalent circuit modeling methods to establish different transformer models. The adaptive modeling method dynamically adjusts model parameters based on actual measurement data, improving accuracy and reliability but resulting in complex and less intuitive circuits. The predefined equivalent circuit modeling method, based on existing theories and experience, provides clear physical significance but has a lower model order that may not fully conform to high-frequency conditions. This thesis analyzes planar transformers with different winding configurations using these modeling methods and employs a flyback converter as the experi-mental platform. The final results show that the transformer equivalent model has frequency response and dynamic characteristics in the flyback converter that align with the actual circuit, confirming the model's accuracy and validity.

論文摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖索引 vi 表索引 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 4 第二章 變壓器高頻等效模擬分析 5 2.1 雙埠網路 5 2.2 π模型變壓器等效電路參數萃取 10 2.3 雙繞組變壓器等效電路參數萃取 16 第三章 變壓器設計 20 3.1 鐵心設計 20 3.1.1 鐵心材質設計 21 3.1.2 鐵心形狀設計 23 3.2 繞組設計 29 3.3 模擬驗證 31 3.3.1 Maxwell模擬驗證 31 3.3.2 HFSS模擬驗證 34 第四章 模擬與實測結果驗證 38 4.1 繞組萃取變壓器等效電路 38 4.1.1 π模型變壓器等效電路 38 4.1.2 雙繞組變壓器等效電路 44 4.2 實體電路與量測波形 52 4.3 模擬波形與實測波形比較 55 第五章 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66

[1] X. Guo, S. Wu, Y. Zhang, C. Dou, and Y. Chi, "Optimal design of high frequency transformer for high power density flyback converter," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 11, pp. 4399-4403, 2022, doi: 10.1109/TCSII.2022.3184724.
[2] W. Meng, L. Li, F. Zhang, and J. Shu, "Soft-switching resonant active clamp flyback converter based-on gan hemts for mhz high step-up applications," in 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 25-27 Aug. 2021 2021, pp. 57-62, doi: 10.1109/WiPDAAsia51810.2021.9656061.
[3] B. Zhao, D. L. Wang, and G. Wang, "Analysis of high frequency flyback converters for high-voltage low-power applications," in 2019 International Vacuum Electronics Conference (IVEC), 28 April-1 May 2019 2019, pp. 1-3, doi: 10.1109/IVEC.2019.8744964.
[4] M. Eslamian, M. Kharezy, T. Thiringer, and Y. V. Serdyuk, "Determination of parasitic capacitance of high-power medium frequency transformers: case study of a high voltage dc biased transformer for wind power application," IEEE Transactions on Power Delivery, vol. 38, no. 6, pp. 4263-4273, 2023, doi: 10.1109/TPWRD.2023.3307638.
[5] A. Abramovitz, C. S. Liao, and K. Smedley, "State-plane analysis of regenerative snubber for flyback converters," IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5323-5332, 2013, doi: 10.1109/TPEL.2013.2243845.
[6] L. Dalessandro, F. d. S. Cavalcante, and J. W. Kolar, "Self-capacitance of high-voltage transformers," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2081-2092, 2007, doi: 10.1109/TPEL.2007.904252.
[7] C. Ji, G. Liang, H. Dong, W. tao, and X. Liu, "Modeling of potential transformers for the very fast transient simulation based on wideband scattering parameter measurements," in 2008 International Conference on Electrical Machines and Systems, 17-20 Oct. 2008 2008, pp. 4061-4064.
[8] C. Yutong, F. Lu, and Z. Zhongyuan, "A high frequency circuit model for current transformer based on the scattering parameter," in APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, 4-7 Dec. 2006 2006, pp. 860-863, doi: 10.1109/APCCAS.2006.342177.
[9] C. Liu, L. Qi, X. Cui, and X. Wei, "Experimental extraction of parasitic capacitances for high-frequency transformers," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4157-4167, 2017, doi: 10.1109/TPEL.2016.2597498.
[10] A. Hadizade, J. N. Nasab, M. Aghaei, and S. Kaboli, "Investigations on equivalent circuit models of high frequency transformers," in 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), 13-15 Feb. 2018 2018, pp. 475-480, doi: 10.1109/PEDSTC.2018.8343843.
[11] M. Damnjanovic, L. Zivanov, G. Radosavljevic, A. Maric, and A. Menicanin, "Parameter extraction of ferrite transformers using S-parameters," in Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, 6-8 Sept. 2010 2010, pp. T8-31-T8-36, doi: 10.1109/EPEPEMC.2010.5606650.
[12] B. Janusz and C. Dariusz, "High frequency transformer modeling," in ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196), 2001, vol. 3: IEEE, pp. 676-679.
[13] K. Shaarbafi, "Transformer modelling guide," Alberta Electric System Operator (AESO), Tech. Rep, 2014.
[14] B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Transactions on Power Delivery, vol. 14, no. 3, pp. 1052-1061, 1999, doi: 10.1109/61.772353.
[15] G. Antonini, "SPICE equivalent circuits of frequency-domain responses," IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 3, pp. 502-512, 2003, doi: 10.1109/TEMC.2003.815528.
[16] B. Cogitore, J. P. Keradec, and J. Barbaroux, "The two-winding transformer: an experimental method to obtain a wide frequency range equivalent circuit," IEEE Transactions on Instrumentation and Measurement, vol. 43, no. 2, pp. 364-371, 1994, doi: 10.1109/19.293449.
[17] B. Cogitore, F. Blache, and J. P. Keradec, "Stray capacitances of two winding transformers: equivalent circuit, measurements, calculation and lowering," in Proceedings of 1994 IEEE Industry Applications Society Annual Meeting, 2-6 Oct. 1994 1994, vol. 2, pp. 1211-1217 vol.2, doi: 10.1109/IAS.1994.377552.
[18] "DMR40, *Material Characteristics*, DMEGC, 2015. Accessed: June 2015."
[19] "DMR44, Material Characteristics, DMEGC, 2022. Accessed: February 2022."
[20] "DMR96, Material Characteristics, DMEGC, 2016. Accessed: July 2016."
[21] "JPP96, Material Characteristics, A-CORE, n.d."
[22] "IPC, IPC-2221: Design Standard for Printed Board and Associated Packages, Institute for Printed Circuits, 2000."
[23] "A-CORE., *Iron Core Type CC40/12*, datasheet. [Online].
Available:http://www.acore-ferrite.com/displayproduct.html?id=2641778169988518&mdId=com_192."
[24] "A-CORE., *Iron Core Type ATQ38/9.5*, datasheet. [Online]. Available:http://www.acore-ferrite.com/displayproduct.html?id=2641778169988524&mdId=com_192."
[25] D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, "A dynamic core loss model for soft ferromagnetic and power ferri-te materials in transient finite element analysis," IEEE Transac-tions on Magnetics, vol. 40, no. 2, pp. 1318-1321, 2004, doi: 10.1109/TMAG.2004.825025.
[26] M. K. Kazimierczuk, High-frequency magnetic components. John Wiley & Sons, 2009.
[27] P. Triverio, S. Grivet-Talocia, M. S. Nakhla, F. G. Canavero, and R. Achar, "Stability, Causality, and Passivity in Electrical Interconnect Models," IEEE Transactions on Advanced Packaging, vol. 30, no. 4, pp. 795-808, 2007, doi: 10.1109/TADVP.2007.901567.

QR CODE