簡易檢索 / 詳目顯示

研究生: 葉凱庭
Kai-ting Yeh
論文名稱: 氧化鋁與316不鏽鋼接合之研究
study of alumina/316SS join
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 薛人愷
Ren-kae Shiue
韋文誠
Wen-Cheng, Wei
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 137
中文關鍵詞: 鉬錳製程活性硬銲金屬與陶瓷的接合
外文關鍵詞: moly-manganese process, active metal braze, brazing
相關次數: 點閱:156下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陶瓷材料具有耐高溫、耐酸鹼、高硬度等特性,但由於本質脆性使其在應用上有相當的難度,透過與金屬接合,藉由金屬的延展性來減少其應用上的不可靠性,才能擴展陶瓷的應用面。陶瓷與金屬接合方法計有鉬錳製程、活性硬銲及軟銲,以上除了軟銲之外,其餘皆需在900℃以上的高溫才可以有效接合陶瓷與金屬。
      本研究分別進行了兩個方向,一是鉬錳製程,另一是活性硬銲接合,皆用來將氧化鋁與316不鏽鋼接合在一起;由於以往的鉬錳製程反應所需溫度極高,為了降低其反應溫度,將其製程改為兩段式製程外,也在其中加入鮮少會添加之金屬鎳,以此降低反應溫度。活性硬銲接合氧化鋁與316不鏽鋼,係在陶瓷與金屬之間夾上一夾層金屬來達到降低殘留應力的效果,避免因熱膨脹係數相差太大導致殘留應力過大,使氧化鋁端出現裂痕與缺陷導致接合效果不好。
      實驗結果顯示,二階段的鉬錳製程於1250℃在氧化鋁基板上進行反應層反應,再於1250℃於反應層上進行鉬錳層反應,最後於800℃下硬銲接合至316不鏽鋼。SEM觀察後證明此方法是可以有效將氧化鋁與316不鏽鋼接合且使其反應溫度可以降低到1250℃。當使用Kovar合金與金屬鎳網當夾層金屬,於900℃持溫5分鐘硬銲接合氧化鋁與316不鏽鋼,其接合強度分別185與大於385MPa。


    Ceramic materials have high melting temperature and are brittle and corrosion-resistant, but their brittleness has limited their wide applications in industries. Ceramic-to-metal joining is the major approach to extend the ceramic applications. The methods of joining metal and ceramic involve the moly-manganese process、active metal braze, and soldering. Except for soldering, moly-manganese process and active metal braze need to be processed over 900℃.
    The moly-manganese process and active metal braze were used in this study to bond Al2O3 and 316SS. The traditional moly-manganese process operates above 1450℃. We modified the moly-manganese process into a two-step process with nickel added to the moly-manganese reaction layer for reducing the reaction temperature. Alumina and 316SS were brazed by the active metal. We put a Kovar or nickel-net interlayer between alumina and 316SS to reduce the high residual stress.
    During the moly-manganese process, a reaction layer on alumina was firstly performed at 1250℃. Secondly, a moly-manganese layer on the reaction layer was proceeded at 1250℃. Thirdly, the surface-reacted Al2O3 was brazed to 316SS at 800℃. SEM observation showed this modified two-step moly-manganese process can join alumina and 316SS at lower temperature of 1250℃. For the active metal brazing, Kovar layer and Ni net were used as an interlayer to join alumina and 316SS at 900℃. The shear bond strengths reach 185 MPa for the Kovar-interlayer joining and over 385MPa for the Ni-net brazing.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2 金屬與陶瓷接合方法 1 1-3 研究動機 2 第二章 理論基礎與文獻回顧 3 2-1 陶瓷材料分析 3 2-2 金屬材料分析 3 2-3 陶瓷與金屬接合考慮因素 4 2-3-1 潤濕性 4 2-3-2 熱應力 7 2-4 接合方式 7 2-4-1 活性硬銲 8 2-4-2金屬化(metallization) 13 2-4-3 擴散接合 21 2-5 接合強度 26 2-5-1 四點彎曲 26 2-5-2 Double cantilever beam test 27 2-6 實驗設計理論 28 第三章 實驗步驟 31 3-1使用儀器介紹 31 3-2 兩段式鉬錳製程藥品選擇及實驗流程 32 3-3 活性硬銲材料、銲料之選擇與實驗流程 37 3-4 剪力測試裝置圖 41 3-5 氧化鋁與不鏽鋼的接合 42 3-5-1兩段式鉬錳層之接合 42 3-5-2 活性硬銲接合 43 3-6 量測儀器 43 3-6-1 X光繞射分析儀(X-ray Diffractometer,XRD) 43 3-6-2 電子微探儀(Electron Probe X-Ray Microanalyzer,EPMA) 44 第四章 結果與討論 47 4-1兩段式鉬錳製程 47 4-1-1 反應層-氧化鉍添加量、反應溫度與成分 47 4-1-2 鉬錳層 57 4-1-3 鉬錳層上鍍銅之目的 58 4-1-4 兩段式鉬錳層接合後之橫截面觀察與探討 59 4-1-5 破斷面XRD 77 4-1-6 總結 82 4-2 活性硬銲 88 4-2-1活性硬銲橫截面探討 88 4-2-2活性硬銲之剪應力測試 103 4-2-3活性硬銲界面反應機制 106 4-2-4 Abaqus殘留應力模擬分析 111 結論 117 參考文獻 119

    H. mizuhara , E. Huebel and T . Oyama “ High-reliability of ceramic to metal ”Ceramic Bulletin , Vol.68, No.9 , pp.1591~1599, 1989.
    H. J. Nolte and R. F. Spurck, “Metallized-Ceramic Sealing with Manganese”, Telev. Engr.Vol.11, 1950.
    H. J. Nolte, “Metallized Ceramic”, U.S. Patent 2,667,432, Jan. 26, 1954.
    M. G. Nicholas and D. A. Mortimer “Ceramic/metal joining for structural applications”Material science and technology, vol.1, pp657~pp665, 1985.
    周荻翔, “氧化鋁電子基板與銅導體真空硬和研究”, pp9~pp11, 1996.
    C.A. Walker And V. C. Hodges, “Comparing metal-ceramic brazing methods”, Welding Journal, vol.87, No.10, pp43~pp50, 2008.
    L. X. Zhanga,*, L. Z. Wub, D. Liua, J. C. Fenga, H. B. Liua,c, “Interface microstructure and mechanical properties of the brazed Sio2 glass ceramic and 30Cr3 high-tensile steel joint”, Material science and engineering A, Vol. 496, pp393-pp398, 2008.
    G. Blugan a,*, Jakob Kuebler a, Vinzenz Bissig b, Jolanta Janczak-Rusch b, “Brazing of silicon nitride ceramic composite to steel
    using SiC-particle-reinforced active brazing alloy”, Ceramics International, Vol.33, pp.1033-pp1039, 2007.
    O. C. Paiva*, M. A. Barbosa, “Brazing parameters determine the degradation and mechanical behaviour of alumina/titanium brazed joints”, Journal Of Materials Science, Vol.35, pp.1165-pp.1175, 2000.
    O.C. Paiva a,*, M.A. Barbosa b,c, “Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems”, Materials Science and Engineering A, Vol.480, pp.306-pp.315, 2008.
    賴耿陽, “陶瓷與金屬接合工學”, 復漢出版社, 1991.
    E. M. Levin, Carl R. Robbins and Howard F. McMuride, “Phase Diagrams For Ceramists”, The American Ceramic Society, Fifth Printing , 1985.
    L. I. BeliČ And AlenkaŠ. Kosmos, “synthesis reactions and thermodynamics of compound formation during MoMn layer sintering”, FIZIKA A, 125–129, 1995.
    K. White* And Daniel P. Kramer, “Microstructure and Seal Strength Relation in the Molybdenum-Manganese Glass Metallization of Alumina Ceramics”, Materials Science and Engineering, Vol. 75, pp207-pp213, 1985.
    S. H. Yang, S. Kang, “Fracture behavior and relizbility of braze alumina joints via mo-mn process and active metal brazing”, Material research society, vol.15, pp2238-2243, 2000.

    G. Liu, Guanjun Qiao, Hongjie Wang and Zhihao Jin, “Microstructure ans strength of alumina-metal joint brazed by activated molybdenum-manganeses method”, Key engineering materials, vol. 353-358, pp2049-2052, 2007.
    I. Foroutan, Rasoul Sarraf Mamoorya,*, Navid Hosseinabadia, “Alumina-copper joining by sintered metal powder process”, Cermic international, Vol. 36, pp741-747, 2010.
    P. Mishra, P. Sengupta, S.N. Athavale, A.L. Pappachan, A.K. Grover,
    A.K. Suri, G.B. Kale, P.K. De, And K. Bhanumurthy, “Brazing Of Hot Isostatically Pressed–Al2O3 To Stainless Steel (AISI 304L) By Mo-Mn Route Using 72Ag-28Cu Braze”, Metallurgical And Materials Transactions A, Volume 36A, pp.1487-pp1494, 2005.
    李紹寬, “銅與氧化鋁接合與其界面性質之研究”, 國立臺灣大學工學院材料科學與工程學系(所)碩士論文, 2009.
    José Lemus-Ruiz1 , Leonel Ceja-Cárdenas1, J. A. Verduzco1 and Osvaldo Flores2, “Joining of tungsten carbide to nickel by direct diffusion bonding and using a Cu–Zn alloy”, Journal of Materials Science, Vol.43, pp6296-pp6300, 2008.
    J.Jarrige*, T. Joyeux, J. P. Lecompte, J. C. Labbe, “Comparison between two processes using oxygen in the Cu/AlN bonding ”, Journal of the european ceramic 27,pp855-PP860 , 2007.
    J.Jarrige*, T. Joyeux, J. P. Lecompte, J. C. Labbe, “Influence of oxygen on the joining between copper and aluminum nitride ”, Journal of the european ceramic 27, pp337-pp341, 2007.
    R. Polanco*, A. De pablos, P. Miranzo, M.i. Osendi, “Metal-ceramic interface:joining siicon nitride-stainless steel”, Applied surface science, Vol. 38, pp506-pp512, 2004.
    P. 0. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, “A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces”, Journal of Applied Mechanics, pp77~pp82, 1989.
    P.G. Charalambides, H.C. Cao, J. Lund And A.G. Evans, “Development Of A Test Method For Measuring The Mixed Mode Fracture Resistance Of Bimaterial Interfaces”, Mechanics of Materials, Vol.8, pp.269-pp.283, 1990.
    黃莊敬, “氧化鋁與鉬錳之界面強度”, 國立台灣大學工學院材料科學與工程學系碩士論文, 2007.
    P.G. Charalambides, H.C. Cao, J. Lund And A.G. Evans, “Development of A Test Method For Measuring The Mixed Mode Fracture Resistance Of Bimaterial Interfaces”, Mechanics Of Materials, Vol. 8, pp269-pp283, 1990.
    Chao-Yu Leea,b,*, Michel Dupeuxb, Wei-Hsing Tuana, “Adhesion strength of Ag/BaTiO3 interface”, Scripta Materialia, Vol.54, pp.453-pp.457, 2006.

    A.A. Volinsky a, N.R. Moodyb, W.W. Gerberich c,*, “ Interfacial toughness measurements for thin films on substrates”, Acta Materialia, Vol.50, pp.441-pp.466, 2002.
    Annual Book Of Astm Standards, Vol.10.04, Pp.11-Pp15, 1996.
    M. Tanaka, Kiyoteru Miyake:U.S. Patent No.0214447, 2005.
    F. Yitinga, Fan Shifta, Sun Renyinga, M. Ishiib, “Study On Phase Diagram Of Bi203-Sio2 System For Bridgman Growth Of Bi4Si3012 Single Crystal”, Progress In Crystal Growth And Characterization Of Materials, pp.183-pp.188, 2000.
    R. E. Loehman 1 And A. P. Tomsia 2, “Reactions Of Ti And Zr With A1n And Al203”, Acta Metal Mater, Vol. 40, Pp.S75-Pp.S83, 1992.
    張志偉, “紅外線快速硬銲接合Ag-Cu-Ti填料/Al2O3基板之動態潤溼行為研究”, 國立台灣大學機械工程學研究所, 2003.
    T.Y. Yanga, R.K. Shiueb, S.K. Wuc,*, “Infrared Brazing Of Ti50Ni50 Shape Memory Alloy Using Pure Cu And Ti–15Cu–15Ni Foils”, Intermetallics, Vol.12, Pp.1285-Pp.1292, 2004.
    Xing Jun Liu1,2, Feng Gao1,2, Cui Ping Wang1,2,4, Kiyohito Ishida3, “Thermodynamic Assessments Of The Ag-Ni Binary And Ag-Cu-Ni Ternary Systems”, Journal Of Electronic Materials, Vol.37, pp.210-pp.217, 2008.
    R.K. Shiuea, S.K. Wu B,* , C.H. Chanb, “The Interfacial Reactions Of Infrared Brazing Cu And Ti With Two Silver-Based Braze Alloys”, Journal Of Alloys And Compounds, Vol.372, pp.148-pp.157, 2004.

    QR CODE