簡易檢索 / 詳目顯示

研究生: 謝育展
Yu-chan Hsieh
論文名稱: 銅錫鈦合金硬銲鑽石之組成相與性能研究
Constitutional Phases and Performances of Cu-Sn-Ti Alloys in the Brazing of Diamond
指導教授: 林舜天
Shun-Tian Lin
口試委員: 王朝正
Chaur-Jeng Wang
朱瑾
Jinn Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 200
中文關鍵詞: 銅基合金硬銲鑽石結合界面介金屬化合物
外文關鍵詞: interface, diamond, brazing, Copper based alloys, intermetallic compound
相關次數: 點閱:351下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅基硬銲合金中,Cu-Sn-Ti合金是理想的活性銲料,對於含碳表面的潤濕性接合佳,適合鑽石的接合應用。本文分析銅錫鈦合金在850~1000℃之間對石墨的潤濕性、組成相變化與結合界面的關係。研究發現,鈦的添加有助於增加潤濕性,但也增加合金的融點。錫的添加有助於合金降低融點,但會影響到合金與石墨的化學反應接合能力。微結構在低錫(10at.%)含量時,鈦含量的增加幫助形成CuSn3Ti5相、Cu2SnTi3相及SnTi3相等硬質介金屬化合物相的存在。在低鈦(10at.%)含量時,錫的增加,會形成Cu6Sn5相、Sn5Ti 6相及Sn3Ti2相等易脆介金屬化合物相,存在偏軟的基地固溶相。結果發現Cu-Sn-Ti合金內若大量含有硬靭的介金屬化合物組成相,Cu-Sn-Ti合金與石墨的接合容易產生裂縫。
    再以四種不同硬銲合金,對接硬銲CVD鑽石片,硬銲合金分別為Cu基、Ag基及二種Ni基合金。使用抗彎試驗測試硬銲合金與CVD鑽石片接合的強度。結果得知Cu-10Sn-15Ti (wt.%)合金與CVD鑽石片的接合強度(260 MPa),較兩種Ni-Cr基(Ni-7Cr-3B-3Fe-0.5Si wt.%與Ni-14Cr-10P wt.%)硬銲合金的接合強度(分別為124MPa 及 88MPa)為高,而與銀基的硬銲合金(Ag-34.25Cu-1In-1.75Ti wt.%)與CVD鑽石片的接合強度(285 MPa)相當。


    Cu-Sn-Ti alloys are ideal brazing filler suitable for bonding application of diamond because of its high wetting and bonding abilities. This study discussed the effects of various composition of Cu-Sn-Ti alloys on the wetting phenomena of graphite, its constitutions, and their interfaces at the temperature ranging from 850~1000℃.
    It was found that the additions of Titanium enhancing the wetting ability of Cu-Sn-Ti alloys; however, although the additions of Tin could lower the melting temperature of the Cu-Sn-Ti alloys, it deteriorated the interface of between graphite and Cu-Sn-Ti alloys caused to affect the chemical bonding of the interface. When the content of Cu-Sn-Ti alloys was at constant low Tin concentration (10at.%), the Titanium addition produced the growth of hard intermetallic compound (IMC) phases, CuSn3Ti5, Cu2SnTi3, and SnTi3; when the content of Cu-Sn-Ti alloys was at constant low Titanium concentration (10at.%), the Tin addition produced the growth of brittle intermetallic compound (IMC) phases, Sn5Ti6 and Sn3Ti2, in the soft matrix. The result was found that the crack was easily occurred at the boundary of graphite and alloys if the constitution had lots of hard intermetallic compound phase (IMC).
    To verify the experiment results, four kinds of most used brazing fillers were used to bond CVD diamonds for testing bending strength. The test results indicated that the bending strength of joining CVD diamonds by using Cu-10Sn-15Ti (wt.%) pre-alloys was higher than those by using two kinds of Ni-Cr based alloys, Ni-7Cr-3B-3Fe-0.5Si (wt.%) alloys and Ni-14Cr-10P (wt.%) alloys, but it had the similar value of the bending strength between CVD diamonds, which used Ag-34.25Cu-1In-1.75Ti (wt.%) alloys as brazing filler for CVD diamonds.

    中文摘要I AbstractIII 誌 謝VI 目 錄VII 圖索引X 表索引XV 第一章緒論1 1.1 研究背景與目的1 1.2 研究範疇2 1.3 研究流程2 第二章文獻回顧4 2.1 鑽石工具4 2.1.1 鑽石工具種類4 2.1.2 鑽石工具的製法及應用特性4 2.1.3 鑽石的特性7 2.2 硬銲作業9 2.2.1 硬銲原理9 2.2.2 潤濕性10 2.2.3 鑽石工具硬銲11 2.2.4 硬銲填料12 2.3 活性金屬銲料15 2.3.1 活性金屬銲料特點15 2.3.2 活性金屬銲料硬銲鑽石工具16 2.3.3 硬銲鑽石之表面結構17 2.4 Cu-Sn-Ti活性硬銲合金19 2.4.1 Cu-Sn-Ti活性硬銲合金的性質19 2.4.2 Cu-Sn-Ti活性銲料的潤濕性20 2.4.3 Cu-Sn-Ti活性銲料的界面接合特性21 2.5 Cu-Sn-Ti硬銲合金的組成相23 2.5.1 Cu-Sn-Ti合金的二元組成相23 2.5.2 Cu-Sn-Ti硬銲合金的三元組成相29 第三章實驗方法37 3.1 實驗流程37 3.1.1 Cu-Sn-Ti原料38 3.2 合金組成配比40 3.3 真空硬銲流程42 3.4 試片製作與潤濕角量測42 3.5 組織觀察與成分分析43 3.6 合金硬銲CVD鑽石片接合強度實驗43 3.6.1 實驗流程43 3.6.2 硬銲合金原料44 3.6.3 CVD鑽石片45 3.6.4 真空硬銲47 3.6.5 鑽石接合強度測試47 3.6.6 儀器分析48 第四章結果50 4.1 Cu-Sn-Ti合金對石墨的潤濕性50 4.2 Cu-Sn-Ti合金微結構組成相的變化52 4.2.1 Cu-Sn-Ti合金在Sn含量為10at.%時的微結構相變化54 4.2.2 Cu-Sn-Ti合金在Ti含量為10at.%時的微結構相變化61 4.2.3 Cu-Sn-Ti合金在Sn、Ti含量均高於20at.%時的微結構相變化70 4.3 Cu-Sn-Ti合金與石墨接合的界面情況80 4.4 Cu-Sn-Ti合金與石墨接合界面的微結構83 4.5 合金硬銲CVD鑽石片實驗90 4.5.1 硬銲合金對CVD鑽石的潤濕性與接合強度90 4.5.2 微結構分析92 4.5.3 CVD鑽石性質變化96 第五章討論99 5.1 潤濕行為99 5.2 界面特性與微結構相的關係103 5.3 介金屬化合物的型態111 5.4 結構相變化116 5.5 硬銲CVD鑽石接合126 5.5.1 硬銲合金接合鑽石界面破壞狀況126 5.5.2 硬銲合金與鑽石接合強度128 第六章結論133 參考文獻135 附錄152 作者簡介156

    1.M. G. Nicholas, T. M. Valentine, and M. J. Waite,“ The Wetting of Alumina by Copper Alloyed with Titanium and other Elements”, Journal of Materials Science, Vol.15, pp. 2197-2206 (1980).
    2.R. Standing, and M. Nicholas, “The Wetting of Alumina and Vitreous Carbon by Copper-tin- titanium Alloys”, Journal of Materials Science, Vol. 13, pp.1509-1514 (1978).
    3.D. Evens, M. Nicholas, and P. M. Scott, “The Wetting and Bonding of Diamonds by Copper-tin-titanium Alloys”, Industrial Diamond Review, Vol. 9, pp.306-309 (1977).
    4.C. C. Lin, R. B. Chen, and R. K. Shiue, “A Wettability Study of Cu/Sn/Ti Active Braze Alloys on Alumina ”, Journal of Materials Science Vol. 36, pp. 2145-2150 (2001).
    5.W. C. Li, C. Liang, and S. T. Lin, “Interfacial Segregation of Ti in the Brazing of Diamond Grits onto a Steel Substrate Using a Cu-Sn-Ti Brazing Alloy”, Metallurgical and Materials Transactions A, Vol. 33A, pp.2163-2172 (2002).
    6.S. F. Huang, H. L. Tsai, and S. T. Lin, “Laser Brazing of Diamond Grits Using a Cu-15Ti-10Sn Brazing Alloy”, Materials Transactions. JIM, Vol. 43, pp.2604-2608 (2002).
    7.W. C. Li, C. Liang, and S. T. Lin,” Epitaxial Interface of Nanocrystalline TiC Formed between Cu-10Sn-15Ti Alloy and Diamond”, Diamond and Related Materials, Vol. 11, pp.1366-1373 (2002).
    8.M. G. Nicholas, “Active Metal Brazing”, British Ceramic Transaction Journal, Vol. 85, pp. 144-146 (1986).
    9.S. F. Huang, H. L. Tsai, and S. T. Lin, “Effects of Brazing Route and Brazing Alloy on the Interfacial Structure between Diamond and Bonding Matrix”, Materials Chemistry and Physics, Vol. 84, pp. 251-258 (2004).
    10.K. Suganuma, T. Okamoto, and M. Koizumi, “Method for Preventing Thermal Expansion Mismatch Effect in Ceramic-metal Joining”, Journal of Materials Letters, Vol. 4, pp. 648-650 (1985).
    11.M. G. Nicholas,“ Joining of Ceramics”, London, New York, Chapman and Hall, ch.5, pp. 73-93 (1990).
    12.M. M. Schwartz, “Ceramic Joining”, Materials Park, Ohio:ASM International, ch.2 , pp. 17-40(1989).
    13.R. K. Shiue, S.T. Buljan, and T. W. Eagar , “Abrasion Resistant Active Braze Alloys for Metal Single Layer Technology”, Science and Technology of Welding and Joining, Vol. 2, pp.71-78 (1997).
    14.F. A. Khalid, U. E. Klotz, H. R. Elsener, B. Zigerlig, and P. Gasser, “ On the Interfacial Nanostructure of Brazed Diamond Grits”, Scripta Materialia, Vol. 50, pp. 1139-1143 (2004).
    15.M.Naka, J.C. Schuster, I. Nakade, and S. Ural, “ Determination of Liquids of the Ternary System Cu-Sn-Ti”, Journal of Phase Equilibria, Vol.22, pp. 352-356 (2001).
    16.S. Hamar-Thibault, and C.H. Allibert,” New Phases in the Ternary Cu-Ti-Sn System”, Journal of Alloys and Compounds, Vol. 317-318, pp. 363-366 (2001).
    17.J.C. Schuster, M. Naka, and T. Shibayanagi,“ Crystal Structure of CuSn3Ti5 and Related Phases”, Journal of Alloys and Compounds, Vol. 305, L1-L3 (2000).
    18.F. Weitzer, L. Perring, T. Shibayanagi, M. Naka, and J. C. Schuster, "Determination of the Crystal Structure of CuSnTi by Full Profile Rietveld Analysis", Power Diffraction, Vol. 15, pp.91-93 (2000).
    19.李文中, “以銅錫鈦合金硬銲表面單層塗佈鑽石工具之微結構分析”, 碩士學位論文, 國立台灣科技大學機械系 (2001).
    20.蕭瑞聖, "使用銅錫鈦粉末硬焊之正交排列立方晶氮化硼研究",碩士學位論文, 國立台灣科技大學機械系 (2000).
    21.陳春光," 銅-11錫-21鈦(at. Pct.)銲料微結構分析", 碩士學位論文,國立台灣科技大學材料科技研究所 (2003).
    22.O. Dezellus, F. Hodaj, A. Mortensen, and N. Eustathopoulos, “Diffusion-Limited Reactive Wetting: Spreading of Cu-Sn-Ti Alloys on Vitreous Carbon”, Scripta Materialia, Vol. 44, pp.2543-2549 (2001).
    23.李大建,” Cu-Sn-Ti體系邊際二元系界面反應的研究”, 粉末冶金材料科學與工程,Vol. 12, pp. 25-29 (2007).
    24.黃聖芳, and 林舜天,” Cu-23Ti-17Sn(at.%)硬銲合金之組成相研究”,Journal of China Institute of Technology, vol.29, pp. 83-91 (2003).
    25.J.T. Lowder, E.M. Tausch,”Diamond Abrasive Tool ”, U.S. Patent, No. 4018576 (1977).
    26.H. MIZUHARA, “Ductile Low Temperature Brazing Alloy”, U.S. Patent, No. 4766041 (1988).
    27.R.C. Wiand,” Brazing of Diamond”, U.S. Patent, No. 4776862 (1988).
    28.M.C. Parsons,” Diamond Abrasive Matrix”, U.S. Patent, No. 3372010 (1968).
    29.A. Huizing, and H.J. Dall,” Method of Joining Diamond to Metal”, U.S. Patent, No. 3192620 (1965).
    30.R. K. SHIUE, R. ANDREWS, T. W. EAGAR, B. MILLER, and S. T. BULJAN, “ Wear Resistant Bond for an Abrasive Tool”, U.S. Patent, No. 5846269 (1998).
    31.R. M. Andrew, B. J. Miller, M. R. Skeem, and R. K.Shiue,“ Bond for Abrasive Tool”, U.S. Patent, No. 5832360 (1998).
    32.B. ALAN, and J. F. H. CUSTERS,“ Diamond Abrasive Particles in a Metal Matrix”, U.S. Patent, No. 3239321 (1966).
    33.Y.V. Naidich, V.P. Umanskii, and I.A. Lavrinenko,” 鑽石的接合技術”, 日本, ohm社出版局, 俄語原文, ch.2,ch.3 (1992).
    34.V.L. Yupko,” Wetting of Silicon Carbide by Cu-Ti and Cu-Sn-Ti Alloys”, Poroshkovaya Metallurgiya, Vol. 177, pp. 81-84 (1977).
    35.P. Villars, A. Prince, and H. Okamoto,” Handbook of Ternary Alloy Phase Diagrams”, Materials Park, Ohio, vol. 5-6 (1995).
    36.Thaddeus B. Massalski, Hiroaki Okamoto, P.R. Subramanian, and Linda Kacprzak,” Binary Alloy Phase Diagrams”, Materials Park, Ohio, vol. 2 (1990).
    37.Website: http://www.e6.com/.
    38.Website: http://www.hhxf.com/.
    39.Website: http://www.sp3inc.com/.
    40.Website: http://www.kinik.com.tw/.
    41.C. Owers, “Industrial Diamond: Applications, Economics and a View to the Future”, Industrial Diamond Review, #3, pp. 176-181 (2000).
    42.C. M. Sung,“ Brazed Diamond Grid: a Revolutionary Design for Diamond Saws”, Diamond and Related Materials, Vol. 8, pp. 1540-1543 (1999).
    43.Anon ," Brazed Beads with a Diamond Grid for Wire Sawing", Industrial Diamond Review, #4, pp. 134-136 (1998).
    44.R.S. Sussmann,” A New Diamond Material for Optics & Electronics”, Industrial Diamond Review, #2, pp. 63-71 (1993).
    45.D. Hayes,” Expanding Far-east Markets for Electroplated Diamond Tools”, Industrial Diamond Review, #3, pp. 95-106 (1998).
    46.[H. K. Tonshoff, and C. Marzenell,“ The Wear of Electroplated Diamond Tools in Gear Honing”, Industrial Diamond Review, #4, pp. 309-315 (1999).
    47.K. Przyklenk,“ Diamond Impregnated Tools-uses and Production”, Industrial Diamond Review, #4, pp. 192-195 (1993).
    48.Anon,“ The Role of Particle Wear Progression in Diamond Tools”, Industrial Diamond Review, #3, pp. 34-37 (2003).
    49.S. Y. Luo,”Investigation of the Worn Surfaces of Diamond Sawblades in Sawing Granite”, Journal of Materials Processing Technology, Vol. 70, pp.1-8 (1995).
    50.H. T. Gruneis,” Sintering and Brazing all in One”, Industrial Diamond Review, #2, pp. 45-54 (1998).
    51.S. Karagoz, and M. Zeren,“ Electronmetallography of Diamond Cutting Tools”, Industrial Diamond Review, #1, pp. 40-41 (2003).
    52.H. K. Tonshoff, and J. Asche,” Wear of Metal-bond Diamond Tools in the Machining of Stone”, Industrial Diamond Review, #1, pp. 7-13 (1997).
    53.M. W. Bailey, R. Garrard, and H. D. Juchem,“ Characteristics of diamond and Their Effect on Grinding Behaviour ”, Industrial Diamond Review, #1, pp. 10-19 (1999).
    54.T. Tanaka, and Y. Isono, “Influences of Metal Constituents to the Characteristics and Grinding Abilities of Metal Bonded Diamond Wheel”, Journal of Materials Processing Technology, Vol. 63, pp. 175-180 (1997).
    55.謝育展,” 常壓燒結金屬基鑽石工具性能研究 ”, 碩士論文, 國立台灣科技大學機械系 (1999)。
    56.S. Karagoz, and M. Zeren, “The Property Optimization of Diamond-cutting Tools with the Help of Micro-structural Characterization”, International Journal of Refractory Metals & Hard Materials, Vol. 19, pp. 23-26 (2001).
    57.S. M. Chen, and S. T. Lin,“ Brazing Diamond Grits onto a Steel Substrate Using Copper Alloys as the Filler Metals”, Journal of Materials Engineering and Performance, Vol. 5, pp. 761-766 (1996).
    58.謝育展, 陳敬福, AND 林舜天,” 鐵基鑽石工具常壓燒結之研究”, 粉末冶金會刊, Vol.24, pp. (1999).
    59.Y. H. Wang, J. B. Zang, M. Z. Wang, Y. Guan, and Y. Z. Zheng, “Properties and Applications of Ti-coated Diamond Grits”, Journal of Materials processing Technology, Vol. 129, pp. 369-372 (2002).
    60.E. Benz, "Vacuum Brazing as a Production Method", Industrial Diamond Review, #5, pp. 249-250 (1991)
    61.A. Davies, “Induction brazing for diamond toolmarkers”, Industrial Diamond Review, #6, pp. 325-327 (1992).
    62.G. Humpston, and D. M. Jacobson, “Principles of Soldering and Brazing”, The Materials Information Society, ch1., ch5., (1993).
    63.M.G. Nicholas, and D.A. Mortimer,” Ceramic/metal Joining for Structural Applications”, Materials Science and Technology, Vol. 1, pp. 657-665 (1985).
    64.Y. Z. Hsieh, J. F. Chen, and S. T. Lin,“ Pressureless Sintering of Metal-bonded Diamond Particle Composition Blocks”, Journal of Materials Science,Vol. 35, pp.5383-5387 (2000).
    65.P. Xiao, and B. Derby, “Wetting of Silicon Carbide by Chromium Containing Alloys”, Acta Materials, Vol. 46, pp. 3491-3499 (1998).
    66.J. H. Kim, Y. C. Yoo, “Bonding of Alumina to Metals with Ag-Cu-Zr Brazing Alloy”, Journal of Materials Science Letters, Vol. 16, pp. 1212-1215 (1997).
    67.N. Y. Taranets, and H. Jones,“ Wettability of Aluminium Nitride Based Ceramics of Different Porosity by two Active Silver Based Brazing Alloys”, Materials Science and Engineering, Vol. A379, pp. 251-257 (2004).
    68.T. Kuzumaki, T. Ariga, and Y. Miyamoto,“ Effect of Additional Elements in Ag-Cu Based Filler Metal on Brazing of Aluminum Nitride to Metals”, ISIJ International, Vol. 30, pp. 1135-1141 (1990).
    69.H. Q. Hao, Y. L. Wang, Z. H. Jin, and X. T. Wang, “Joining of Zirconia to Zirconia Using Ag-Cu-Ti Filler Metal”, Journal of Materials Processing Technology, Vol. 52, pp. 238-247(1995).
    70.W. P. Weng, H. W. Wu, Y. H. Chai, and T. H. Chuang, “Interfacial Characteristics for Active Brazing of Alumina to Superalloys”, Journal of Advanced Materials, #1, pp. 35-40 (1997).
    71.S. Kang, E. M. Dunn, J. H. Selverian, and H. J. Kim," Issues in Ceramic-to-Metal Joining: Investigation of Brazing a Silicon Nitride-Based Ceramic to a Low-expansion Superalloy", Ceramic Bulletin, Vol. 68, pp. 1608-1617 (1989).
    72.F. Sun, J. Feng, and D. Li,“ Bonding of CVD Diamond Thick Films Using an Ag-Cu-Ti Brazing Alloy”, Journal of Materials Processing Technology, Vol. 115, pp. 333-337 (2001).
    73.H. Hao, Y. Wang, Z. Jin, and X. Wang, “Interfacial Reaction of Alumina with Ag-Cu-Ti Alloy”, Journal of Materials Science, Vol. 30, pp. 1233-1239 (1995).
    74.M. G. Nicholas, D. A. Mortimer, L. M. Jones, and R. M. Crispin,“ Some Observations on the Wetting and Bonding of Nitride Ceramics”, Journal of Materials Science, Vol. 25, pp.2679-2689 (1990).
    75.A. P. Xian, and Z. Y. Si,” Joining of Si3N4 Using Ag57Cu38Ti5 Brazing Filler Metal”, Journal of Materials Science, Vol. 52, pp.4483-4487 (1990).
    76.T. Kuzumaki, T. Ariga, and Y. Miyamoto,“ Effect of Additional Elements in Ag-Cu Based Filler Metal on Brazing of Aluminum Nitride to Metals”, The Iron and Steel Institute of Japan International, Vol. 30, pp.1135-1141 (1990).
    77.R. E. Loehman and A. P. Tomsia, “Wetting and Joining of Mullite Ceramics by Active-Metal Braze alloys”, Journal of American Ceramic Society, Vol. 77, pp.271-274 (1994).
    78.A. K. Chattopadhyay, and H. E. Hintermann, “On Brazing of Cubic Boron Nitride Abrasive Crystals to Steel Substrate with Alloys Containing Cr or Ti”, Journal of Materials Science, Vol. 28, pp.5887-5893 (1993).
    79.A. Palavra, A. J. S. Fernandes, C. Serra, F. M. Costa, L. A. Rocha, and R. F. Silva,“ Wettability Studies of Reactive Brazing Alloys on CVD Diamond Plates”, Diamond and Related Materials, Vol. 10, pp. 775-780 (2001).
    80.K. Satoshi, Y. Toyohiko, and I. Takayoshi,“ Interfacial Structures Between Ag-Cu-Ti Alloy and Sintered SiC with Various Additives”, Journal of the Ceramic Society of Japan, Vol. 101, pp. 325-330 (1993).
    81.Anon,“ Advances in the Brazing of Syndrill”, Industrial Diamond Review 6, pp. 254-257 (1987).
    82.O. M. Akselsen, “Review Advances in Brazing of Ceramics”, Journal of Materials Science, Vol. 27, pp. 1989-2000 (1992).
    83.M. Paulasto and J. K. Kivilahti, “Formation of Interfacial Microstructure in Brazing of Brazing of Si3N4 with Ti-activated Ag-Cu filler Alloys”, Script Metallurgica et Materials, Vol. 32, pp. 1209-1214 (1995).
    84.[R. Klein, D. B. Martine, P. Ginet, A. Bellosi, and J. Desmaison, “Wettability of Silicon Nitride Ceramic Composites by Silver, Copper and Silver Copper Titanium Alloys”, Journal of the European Ceramic Society, Vol. 25, pp. 1757-1763 (2005).
    85.T. Oyama, and H. Mizuhara, “Direct Brazing of Graphite using a Copper-Base Active-Brazing Filler metal”, Welding in the World, Vol. 41, pp. 412-419 (1998).
    86.R. Voitovitch, A. Mortensen, F. Hodaj, and N. Eustathopoulos, “Diffusion-Limited Reactive Wetting: Study of Spreading Kinetics of Cu-Cr Alloys on Carbon Substrates”, Acta Materialia, Vol. 47, pp. 1117-1128 (1999).
    87.Y. Naidich, and V. Krasovsky, “The Nonwettability Behavior of Solid in Contact with Chemical Active Reach Ti-,Zr- and Hf-liquid Alloys”, Journal of Material Science, Vol. 17, pp. 683-685 (1998).
    88.T. Fujimori, Y. Yamamoto, and A. Okada,” Improvement of Strength and Cutting Performance of Industrial Diamond”, Journal of the Materials Science Society of Japan, Vol. 32, pp. 39-49 (1995).
    89.P.M. Scott, and M. Nicholas," The Wetting and Bonding of Diamond by Copper-Base Binary Alloys", Journal of Material Science, Vol. 10, pp.1833-1840 (1975).
    90.黃聖芳, "銅-錫-鈦合金組成相之研究 ", 博士論文, 國立台灣科技大學機械系 (2003).
    91.A. P. Xian,“ Wetting of Si-Al-O-N Ceramic by Sn-5at.%Ti-X Ternary Active Solder”, Materials Science and Engineering, Vol. B25, pp. 39-46 (1994).
    92.H. K. Lee, S. H. Hwang, and J. Y. Lee, "Effects of the Relative Contents of Silver and Copper on the Interfacial Reactions and Bond Strength in the Active Brazing of SiC", Journal of Materials Science, Vol. 28, pp. 1765-1774 (1993).
    93.P.J. Heath, and J. Dodsworth,” Brazeable PCBN Inserts- a User’s Guide”, Industrial Diamond Review, #3, pp. 107-111 (1987).
    94.關硯聰, 陳玉全, and 姚德明,” Ag-Cu-Ti鉛料鉛焊單晶金剛石磨粒的研究”, 金剛石與磨料磨具工程, Vol. 147, pp. 23-25 (2005).
    95.孫風蓮, 馮吉才, 劉會杰, 邱平善, and 李丹,”Ag-Cu-Ti鉛料中Ti元素在金剛石界面的特征”, 中國有色金屬學報, Vol. 11, pp. 103-106 (2001).
    96.J. K. Boadi, T. Yano, and T. Iseki, “Brazing of Pressureless sintered SiC Using Ag-Cu-Ti Alloy”, Journal of Materials Science, Vol. 22, pp. 2431-2434 (1987).
    97.J. J.Pak, M. L. Santella, and R. J. Fruehan,” Thermodynamics of Ti in Ag-Cu Alloys”, Metallurgical Transactions B, Vol. 21B, pp. 349-355 (1990).
    98.L. D. Wang, and T. Oki,” Reaction Behavior of Joining Interface of Zirconia-SUS304 by Active Metal Brazing Using Ti”, Journa of Ceramic Society of Japan, Vol. 103, pp. 671-673 (1995).
    99.盧金斌, and 穆芸超,”Ni-Cr合金鉛銲鈧鈦金剛石的研究”, 金剛石與磨料磨具工程, Vol. 156, pp. 19-21 (2005).
    100.盧文壯, 左敦穩, 王瑕, 黎向鋒, 徐鋒,” Cr過渡層沉積粘附型CVD金剛石膜的機理研究”, 中國機械工程, Vol. 15, pp. 1676-1680 (2004).
    101.蔡丕椿,” 銅錳錫基合金硬銲鑽石工具研究”, 國立虎尾科技大學研究計畫成果 (2004).
    102.U.E. Klotz, F.A. Khalid, and H.R. Elsener,” Nanocrystalline Phases and Epitaxial Interface Reactions During Bazing of Diamond Grits with Silver Based Incusil-ABA Alloy”, Diamond and Related Materials, Vol. 15, pp. 1520-1524 (2006).
    103.Y.H. Chai, W.P. Weng, and T.H. Chuang,” Relationship Between Wettability and Interfacial Reaction for Sn10Ag4Ti on Al2O3 and SiC Substrates”, Ceramics International, Vol. 24, pp. 273-279 (1998).
    104.F. Sun, J. Feng, and D. Li,” Bonding of CVD Diamond Thick Films Using an Ag-Cu-Ti Brazing Alloy”, Journal of Materials Processing Technology, Vol. 115, pp. 333-337 (2001).
    105.H. K. Lee, and J.Y. Lee,” A Study of the Wetting, Microstructure and Bond Strength in Brazing SiC by Cu-X(X=Ti, V, Nb, Cr) Alloy”, Journal of Materials Science, Vol. 31, pp. 4133-4140 (1996).
    106.B. Xiao, H.J. Xu, Y.C. Fu , and J.H. Xu,” Form and Distribution Characterization of Reaction Products at the Brazing Interface Between Ni-Cr Alloy and Diamond”, Key Engineering Materials, Vol. 259-260, 151-153 (2004).
    107.P.M. Scott, and M. Nicholas," The Wetting and Bonding of Diamond by Copper-Base Binary Alloys", Journal of Material Science, Vol. 10, pp. 1833-1840 (1975).
    108.P.R. Davis, M.L. Fish, S. Peacock, and D.N. Wright,” An Indicator System for Saw Grit”, Industrial Diamond Review, #3, pp. 78-87 (1996).
    109.A.A. Gistfini and J.E. Tydings,” Diamond Synthesis: Observations on the Mechanism of Formation”, The American Mineralogist, vol. 47, pp.1393-1421 (1962).
    110.A. W. Adamson,“ Physical Chemical of Surfaces, 5th”, U.S., John Wiley & Sons, ch.10, pp. 385-389 (1990).
    111.M. G. Nicholas, and R. M. Crispin,“ Some Effects of Anisotropic Roughening on the Wetting of Metal Surfaces”, Journal of Materials Science, Vol. 21, pp. 552-528 (1986).
    112.A. K. Chattopadhyay, L. Chollet and H. E. Hintermann, “ Experiment Investigation on Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy Under Argon Atmosphere”, Journal of Materials Science, Vol. 26, pp. 5093-5100 (1991)
    113.Yu-Chan Hsieh, and Shun-Tian Lin,” Interfacial Bonding Strength Between Brazing Alloys and CVD Diamond”, Journal of Materials Engineering and Performance, Acceptted for Publication (2008).
    114.G. Blugan, J. J. Rusch, and J. Kuebler, “Properties and Fractography of Si3N4/TiN Ceramic Joined to Steel with Active Single Layer and Double Layer Braze Filler Alloys”, Acta Materiallia, Vol. 52, pp. 4579-4588 (2004).
    115.A. V. Durov, B. D. Kostjuk, A. V. Shevchenko, and Y. V. Naidich, “Joining of Zirconia to Metal with Cu-Ga-Ti and Cu-Sn-Pb-Ti Fillers”, Materials Science and Engineering A, Vol. 290, pp.186-189 (2000).
    116.C. Rado, S. Kalogeropoulou, and N. Eustathopoulos,“ Wetting and Bonding of Ni-Si Alloys on Silicon Carbide”, Acta Materials, Vol. 47, pp. 461-473 (1999).
    117.A. M. Hadian and R. A. L. Drew,“ Thermodynamic Modeling of Wetting at Silicon Nitride/Ni-Cr-Si Alloy Interfaces”, Materials Science and Engineering, Vol. A189, pp. 209-217 (1994).
    118.C. Wan, P. Kritsalis, B. Drevet, N. Eustathopoulos, “ Optimization of Wettability and Adhesion in Reactive Nickel-based Alloys/Alumina Systems by a Thermodynamic Approach”, Materials Science & Engineering, Vol. A207, pp. 181-187 (1996).
    119.T. Yamazaki, and A. Suzumura, “Role of the Reaction Product in the Solidification of Ag-Cu-Ti Filler for Brazing Diamond”, Journal of Materials Science, Vol. 33, pp. 1379-1384 (1998).
    120.R. K. Shiue, S. K. Wu, and C. H. Chan, “The Interfacial Reactions of Infrared Brazing Cu and Ti with two Silver-based Braze Alloys”, Journal of Alloy and Compounds, Vol. 372, pp. 148-257 (2004).
    121.H. Hongoi, W. Yonglan, J. Zhihao, and W. Xiaotian, “Interfacial Reaction of Alumina with Ag-Cu-Ti alloy”, Journal of Materials science, Vol. 30, pp. 1233-1239 (1995).
    122.M. Paulasto, F. J. J. Van Loo, and J. K. Kivilahti, “ Thermodynamic and Experimental Study of Ti-Ag-Cu Alloys”, Journal of Alloys and Compounds, Vol. 220, pp. 136-141 (1995).
    123.W. C. Lee,“ Joining of Nickel-based Inconel 600 Alloy to Alumina Using Ag-Cu-Ti Alloy and Soft Metals”, Journal of Materials Science Letters, Vol. 15, pp. 29-31 (1996).
    124.Y. S. Chung, and T. Iseki,”Wetting and Joining of SiC by Ag-Cu-x%Ti Brazing Alloys”, Journal of the Ceramic Society of Japan, Vol. 98, pp. 583-589 (1990).
    125.H. Hao, Y. Wang, Z. Jin and X. Wang,“ Interfacial Morphologies between Alumina Silver-Copper-Titanium Alloy”, Journal of Materials Science, Vol. 32, pp. 5011-5015 (1997).
    126.P. O. Santacreu, J. L. Koutny, J. D. Bartout, Y. Bienvenu, and C. Colin,“ A Study of the Reactive Brazing of a Silicon Nitride to Steel using Ternary Ag-Cu-Ti: Microstructure and Mechanical Strength of the Bonds”, Materials At High Temperatures, Vol.12, pp. 293-299 (1994).
    127.M. Brochu, M. D. Pugh, and R. A. L. Drew,“ Brazing silicon Nitride to an Iron-based Intermetallic Using a Copper Interlayer”, Ceramics International, Vol. 30, pp. 901-910 (2004).
    128.H. K. Lee, and J. Y. Lee,” Decomposition and Interfacial Reaction in Brazing of Sic by Copper-Based Active Alloys”, Journal of Materials Science Letters, Vol. 11, pp. 550-553 (1992).
    129.M. Brochu, M.D. Pugh, and R.A.L. Drew,” Joining silicon Nitride Ceramic Using a Composite Powder as Active Brazing Alloy”, Materials Science and Engineering, Vol. A374, pp. 34-42 (2004).
    130.D.H. Kim, S.H. Hwang, and S.S. Chun,” The Wetting and Bonding of Si3N4 by Copper-titanium Alloys with Other Elements”, Ceramics International, Vol. 16, pp. 333-347 (1990).
    131.Z.J. Yao, H.H. Su, Y.C. Fu, and H.J. Xu,” High Temperature Brazing of Diamond Tools”, Transcation Nonferrous Metallurgy Society of Chian, vol.15, pp. 1227-1302 (2005).
    132.X. Wu, H. Li, R.S. Chandel, F. Lan, and H.P. Seow,” Effect of Mechanical Vibration on TLP Brazing with BNI-2 Nickel-based Metal”, Journal of Materials Science Letters, Vol. 19, pp. 319-321 (2000).
    133.M. Aizenshtein, N. Froumin, E. Shapiro-Tsoref, M. P. Dariel, and N. Frage,“ Wetting and Interface Phenomena in the B4C/ (Cu-B-Si) System”, Script Metallurgica et Materials, Vol. 53, pp. 1231-1235 (2005).
    134.J.G. Li, and H. Hausner,” Wettability of Silicon Carbide by Gold, Germanium and Silicon”, Journal of Materials Science Letters, Vol. 10, pp. 1275-1276 (1991).
    135.D. Huh, and D.H. Kim,” Joining of AlN to Cu Using In-base Active Brazing Fillers”, Journal of Materials Research, Vol. 12 , pp. 1048-1055 (1997).
    136.Yu-Chan Hsieh, and Shun-Tian Lin,” Microstructural Development of Cu-Sn-Ti Alloys on Graphite”, Journal of Alloys and Compounds, Acceptted for Publication, 2007.
    137.M. Jennings, and D. Wright, “Guidelines for Sawing Stone”, Industrial Diamond Review, #2, pp. 70-75 (1989).
    138.J. Konstanty,“ The Materials Science of Stone Sawing”, Industrial diamond Review, #1, pp. 27-31 (1991).
    139.X. F. liu, and Y. Z. Li,” The Microanalysis of the Bonding Condition between Coated Diamond and Matrix”, International Journal of Refractory Metals & Hard Materials, Vol. 21, pp. 119-123 (2003).
    140.W. L. Winterbottom,“ Equilibrium Shape of a Small Particle in Contact with a Foreign Substrate”, Acta Materiallia, Vol. 15, pp. 303-310 (1969).
    141.H. Nakae, H. Fujii, and K. Sato,“ Reactive Wetting of Ceramics by Liquid Metals”, Materials Transactions, JIM, Vol. 33, pp. 400-406 (1992).
    142.B.J. Dalgleish, E. Saiz, A.P. Tomisa, R.M. Cannon, and R.O. Ritchie,” Interface Formation and Strength in Ceramic-metal Systems”, Scripta Meatllurgica et Materialia, Vol. 31, pp. 1109-1114 (1994).
    143.W.J. Garbelini, and G.E.P. Henrique,” Evalutation of Low-fusing Ceramic Systems Combined with Titanium Grades Ⅱ and Ⅴ by Bending Test and Scanning Electron Microscopy”, Journal of Applied Oral Science, Vol. 11, pp. 354-360 (2003).
    144.S.F. Huang, H.L. Tsai, and S.T. Lin," Crystal Structure and X-Ray Diffraction Pattern of CuSnTi3 Intermetallic Phase", Intermetallics, Vol. 13, pp. 87-92 (2005).
    145.C.R. Kao,“ Microstructures Developed in Solid-liquid Reactions: Using Cu-Sn Reaction, Ni-Bi Reaction, and Cu-In Reaction as Examples”, Materials Science and Engineering,Vol. A238, pp. 196-201 (1997).
    146.Y.G. Lee, and J.G. Duh,” Phase Analysis in the Solder Joint of Sn-Cu Solder/IMCs/Cu Substrate”, Materials Characterization, Vol. 42, pp. 143-160(1999).
    147.R.N. Grugel, and L.N. Brush,“ Evalution of the Rod-like Cu6Sn5 Phase in Directionally Solidified Tin-0.9 wt.% Copper Eutectic Alloys”, Materials Characterization, Vol. 38, pp. 211-216 (1997).
    148.M. Brochu, S.F. Corbin, M.D. Pugh, and R.A.L. Drew, “ Assessment of Melting Behavior of Cu-coated Ti Powders using Thermal Analysis”, Materials Science and Engineering Vol. A369, pp. 56-65 (2004).
    149.M. Brochu, and R. A. L. Drew, “Combining Thermodynamics and DSC to Characterize the Melting and Wetting Behavior of a Composite Powder used for Joining Ceramics”, Journal of Materials Science, Vol. 40, pp. 2443-2447 (2005).
    150.G.K. Dey, A. Biswas, S.K. Roy, and S. Banerjee,” Rapid Solidification Effects during Micropyretic Synthesis of Ti50Cu50 Intermetallic Compound”, Materials Science and Engineering, Vol. A304-306, pp. 641-645 (2001).
    151.T.D. Uzunov, S.I. Lambov, and S.P. Stojanov,“ Kinetics of Solid-Phase Interactions in Thin-Film Cu/Ti System with an Excess of Ti”, Vacuum, Vol. 46, pp. 1347-1350 (1995).
    152.C. Kuper, W. Peng, A. Pisch, F. Goesmann, and R. S. Fetzer, “Phase Formation and Reaction Kinetics in the System Ti-Sn”, Z. Metallkde., Vol. 89, pp. 855-862 (1998).
    153.J.W.O. Brien, R.A. Duniap, and J.R. Dahn, “A Mossbauer Effect and X-ray Diffraction Investigation of Ti-Sn Intermetallic Compound: Ⅰ. Equilibrium Phases”, Journal of Alloys and Compounds, Vol. 353, pp. 60-64 (2003).
    154.M. Bulanova, L. Tretyachenko, K. Meleshevich, V. Saltykov, V. Vereshchaka, O. Galadzhyj, L. Kulak, and S. Firstov, “Influence of Tin on the Structure and Properties of as-cast Ti-rich Ti-Si Alloys”, Journal of Alloys and Compounds, Vol. 350, pp. 164-173 (2003).
    155.L. San, J. Pan, and C. Lin,” A New Approach to Improve the Performance of Diamond Sawblades”, Materials Letters, Vol. 57, pp. 1010-1014 (2002).
    156.http://www.wesgometals.com/.
    157.http://www.degussa.com/.
    158.http://www.lucasmilhaupt.com/.
    159.Z. Jiang, F.X. Lu, W.Z. Tang, S.G. Wang, Y.M. Tong, T.B. Huang, and J.M. Liu,” Accurate measurement of fracture toughness of free standing diamond films by three-point bending tests with sharp pre-cracked specimens”, Diamond and Related Materials, Vol. 9, pp. 1734-1738 (2000).
    160.黃坤祥,” 粉末冶金學”, 台灣,中華民國粉末冶金協會,Ch.10, Ch.11, Ch.14 (2002).
    161.趙康, 王泓, 鄢君輝, and 鄭修麟,” Al2O3/TiC復合陶瓷高溫彎曲強度與彎曲切口強度研究”, Acta Materiae Compositate SNINICA, Vol. 16, pp. 224-228 (1999).
    162.X.P. Xu, X.R. Tie, and Y.Q. Yu,” The Effects of Rare Earth on the Fracture Properties of Different Metal-diamond Composites”, Journal of Materials Processing Technology, Vol. 187-188, pp. 421-424 (2007).
    163.K.L. Jackson, D.L. Thurston, P.J. Boudreaux, R.W. Armstrong, and C.C. Wu,” Fracturing of Industrial Diamond Plates”, Journal of Materials Science, Vol. 32, pp. 5035-5045 (1997).

    QR CODE