簡易檢索 / 詳目顯示

研究生: 詹益明
Yi-ming Chan
論文名稱: 氧化亞銅-氧化鋅異質接面太陽能電池之研製
Study of p-Cu2O / n-ZnO Heterojunction Solar Cells
指導教授: 周賢鎧
Shyankay Jou
口試委員: 胡毅
Yi Hu
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 異質接面太陽能電池載子濃度遷移率
外文關鍵詞: heterojuction, solar cell, carrier concentration, mobility
相關次數: 點閱:239下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究探討製備p-Cu2O/n-ZnO及p-Cu2O/n-AZO異質接面型太陽能電池,首先製備p-Cu2O主要分為兩種方式,分別為RF氧氣電漿與微波電漿;其次n-ZnO與n-AZO主要以濺鍍法製備,並比較其差異性。
  對於薄膜之物性分析,本實驗利用XRD與SEM探討p-Cu2O薄膜之元素成分及表面結構,接著針對n-ZnO與n-AZO薄膜之元素成分及表面結構分析,也利用UV及Hall量測,分別探討n-ZnO與n-AZO薄膜的光性、載子濃度及遷移率,並比較其差異性。
  對於元件之電性分析,最後利用濺鍍法及網印法製備ITO薄膜及金屬電極,以利完成太陽電池之製作,再利用I-V量測系統探討電池之特性。本實驗分別討論不同方式製備p-Cu2O/n-ZnO及p-Cu2O/n-AZO異質接面型太陽能電池,由結果得到,以微波電漿製備938 nm 之氧化亞銅薄膜並在其上濺鍍一層400 nm AZO薄膜之太陽電池,可得獲Voc = 0.3 V、Isc = 2.48 mA、填充因子FF = 0.341及效率η = 0.301%。


  This study described p-Cu2O/n-ZnO and p-Cu2O/n-AZO heterojuction solar cells that were fabricated by two kinds of methods. Fabrication of p-Cu2O thin film has been conducted by RF O2 plasma oxidizing and microwave plasma oxidizing, respectively. On the other hand, fabrication of n-ZnO and n-AZO thin films have been achieved by sputter deposition.
  For the analyses of thin films, elements and surface structure of p-Cu2O thin films was characterized by SEM and XRD measurements. Composition and surface structure of n-ZnO and n-AZO thin films and surface structure were analyzed by SEM and XRD. Mobility, carrier concentrations and optoical properties of ZnO and AZO films were measured by UV and Hall measurement.
  For the analysis of solar cells, ITO thin film and metal electrode were added by sputter and screen printing for I-V measurement. Performance of p-Cu2O/n-ZnO and p-Cu2O/n-AZO heterojuction solar cells were compared. The best results were Voc = 0.3 V、Isc = 2.48 mA、FF = 0.34 and η = 0.301% for the solar cell with 938 nm p-Cu2O by microwave plasma and 400 nm n-AZO.

目錄 摘 要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 前言 1 第二章 文獻回顧 2 2.1 太陽能電池 2 2.1.1 太陽光譜 2 2.1.2 太陽能電池發電原理 3 2.1.3 太陽能電池I-V與效率計算 6 2.1.4 影響及提升太陽能電池效率 8 2.2 氧化鋅薄膜 12 2.2.1 氧化鋅之簡介 12 2.2.2 氧化鋅薄膜的發光機制 13 2.3 氧化亞銅薄膜 17 2.3.1 氧化亞銅之簡介 17 2.3.2 氧化亞銅的應用 18 2.3.3 氧化亞銅文獻回顧 18 2.4 濺鍍與電漿氧化技術 20 2.4.1 電漿原理 20 2.4.2 濺射機制 22 2.4.3 射頻與直流濺鍍法 22 2.4.4 微波電漿法 23 2.4.5 薄膜成長機制 24 2.4.6 電漿氧化 26 第三章 實驗步驟與方法 27 3.1 實驗用材料與藥品規格 27 3.2 實驗流程 28 3.3 實驗步驟 30 3.3.1 氧化亞銅薄膜之製備 30 3.3.2 ZnO/AZO薄膜之製備 31 3.3.3 ITO導電薄膜之製備 31 3.3.4 網版及網印電極之製作 32 3.3.5 元件之退火處理 32 3.4 實驗儀器與裝置 33 3.4.1 RF氧氣電漿氧化系統 33 3.4.2 微波電漿系統 34 3.4.3 磁控式濺鍍系統 35 3.4.4 石英管爐系統 36 3.5 分析與鑑定 37 3.5.1 X光繞射儀 37 3.5.2 掃瞄式電子顯微鏡 38 3.5.3 表面輪廓儀 39 3.5.4 紫外光與可見光光譜儀 40 3.5.5 霍爾量測 41 3.5.6 太陽光模擬器及I-V量測儀 42 第四章 結果與討論 43 4.1 氧化亞銅薄膜分析 43 4.1.1 RF氧氣電漿製備氧化亞銅薄膜 43 4.1.2 微波電漿製備氧化亞銅薄膜 47 4.2 氧化鋅薄膜分析 55 4.2.1 光學性質分析 55 4.2.2 電學性質分析 59 4.2.3 XRD結晶分析 62 4.2.4 SEM表面結構分析 67 4.3 太陽能電池分析 71 4.3.1 PartA 結構為RF氧氣電漿/濺鍍ZnO薄膜之電池分析 71 4.3.2 PartB 結構為微波電漿/濺鍍ZnO薄膜之電池分析 80 4.3.3 PartC 結構為RF氧氣電漿/濺鍍AZO薄膜之電池分析 83 4.3.4 PartD 結構為微波電漿/濺鍍AZO薄膜之電池分析 85 第五章 結論 88 參考文獻 90

[1] 陳維新, 「能源概論」, 高立圖書有限公司, 民國97年2月。
[2] 陳怡伶, 「氧化銅太陽能電池之添加物影響」, 義守大學材料科學與工程學系碩士班碩士論文, 民國97年。
[3] 陳枝政, 「電漿氧化製備銅氧化物及銅-二氧化矽復合材料之太陽能選擇性吸收膜之性質研究」, 台灣科技大學材料科技研究所碩士論文, 民國98年。
[4] G. Makiwa, G. Katumba and L. Olumekor, “Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers”, Proceeding of SPIE, 7046, pp. 1-8, 2008.
[5] 林文章, 「表面粗化在化合物半導體太陽能電池特性影響之研究」, 雲林科技大學材料科技研究所碩士論文, 民國96年。
[6] 林明獻, 「太陽電池技術入門」, 全華圖書股份有限公司, 台北, 第2-10~2-18頁, 2008。
[7] 林螢光, 「光電子學-原理、元件與應用」, 全華圖書出版社, 1999。
[8] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, ”Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics”, Science, vol. 293, pp. 1119-1122, 2001.
[9] D. A. Neamen, Semiconductor physics &devices, 2nd ed, McGraw-Hill Press, New York.
[10] A. Goetzberger, Technical Digest of the 12th International Photovoltaic Science and Engineering Conf., Korea Institute of Energy Research, Korea, pp. 5, 2001.
[11] 施敏著, 黃調元譯, 「半導體元件物理與製作技術」, 國立交通大學出版社, 2002.
[12] A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, “Material and solar cell research in microcrystalline silicon”, Solar Energy Materials & Solar Cells, vol. 78, pp. 469-491, 2003.
[13] 郭益男, 「反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究」, 中山大學電機工程學系碩士論文, 民國93年。
[14] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Letters, vol. 55, pp. 67-72, 2002.
[15] S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” Journal of the European Ceramic Society, vol. 23, pp. 1593-1598, 2003.
[16] 水瑞鐏, 「氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用」, 國立成功大學電機工程學系博士論文, 民國91年。
[17] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells,” Thin Solid films, vol. 354, pp. 227-231, 1999.
[18] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[19] L. Yi, Y. Hou, H. Zhao, D. He, Z. Xu, Y. Wang and X. Xu, “The photo- and electro -luminescence properties of ZnO:Zn thin film,” Displays, vol. 21, pp. 147-149, 2000.
[20] Y. H. Lee, M. H. Song and B. K. Ju, “Thin film phosphor prepared by physical vapor deposition for field emission display application,” The Journal of Vacuum Science and Technology B, vol. 15, pp. 512-515, 1997.
[21] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO,” Physica B, vol. 308-310, pp. 1197-1200, 2001.
[22] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[23] M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films,” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[24] 王敬龍, 「以溶膠-凝膠法製備ITO 薄膜之製程研究」, 國立成功大學材料科學及工程研究所碩士論文, 民國85年。
[25] 許國銓, 「科技玻璃-高性能透明導電膜玻璃」, 材料與社會,1993年,84 期。
[26] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu, “Luminescence properties of ZnO films annealed in growth ambient and oxygen,” J. Crystal Growth, vol. 263, pp. 269-272, 2004.
[27] C. Shi, Z. Fu, C. Guo, X. Ye, Y. Wei, J. Deng, J. Deng, J. Shi and G. Zhang, “UV luminescence and spectral properties of ZnO films deposited on Si substrates”, Journal of Electron Spectroscopy and Related Phenomena, vol. 101-103, pp. 629-632, 1999.
[28] C. C. Lin, C. S. Hsiao, S. Y. Chen and S. Y. Cheng, “Ultraviolet emission in ZnO films controlled by point defects,” Journal of the European Ceramic Society, vol. 15, pp. G282-G288, 2004.
[29] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO,” Physica B, vol. 308-310, pp. 1197-1200, 2001.
[30] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[31] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition,” Applied Surface Science, vol. 168, pp. 332-334, 2000.
[32] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photo luminescence in ZnO phosphor powders,” Journal of Applied Physics, vol. 79, pp. 7983-7990, 1996.
[33] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, “Characteristics of ZnO :Zn phosphor thin films by post-deposition annealing,” Nucl. Instr. and Meth. B, vol. 169, pp. 59-63, 2000.
[34] E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide,” Journal of Applied Physics, vol. 49, pp. 1188-1195, 1978.
[35] H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, “Solar selective copper-black layers by an anodic oxidation process”, Solar Energy Materials, vol. 4, pp. 291-299, 1981.
[36] L. O. Grondahl, “Theories of a New Solid Junction. Rectifier”, Science, vol. 64, pp. 306-308, 1926.
[37] L. Kleinman and K. Mednick, “Self-consistent energy bands of Cu2O”, Physical Review B, vol. 21, no.4, pp. 1549-1553, 1980.
[38] K. Johnsen, G. M. Kavoulakis, “Probing Bose-Einstein Condensation of Excitons with Electromagnetic Radiation”, Physical Review Letters, vol. 86, pp. 858-861, 2001.
[39] Chen Z Z, Shi EW, Zheng Y Q, Li W J, Xiao B and Zhuang J Y, “Growth of hex-pod-like Cu2O whisker under hydrothermal conditions”, Journal of Crystal Growth, vol. 249, pp. 294-300, 2003.
[40] C. A. N. Fernando, L. A. A. De. Silva, R. M. Mehra and K. Takahashi, “Junction effects of p-Cu2O photocathode with layers of hole transfer sites (Au) and electron transfer sites (NiO) at the electrolyte interface”, Semiconductor Science and Technology, vol. 16, pp. 433-439, 2001.
[41] M. Buckley, Harold Eugene, Crystal growth, Wiley, New York, 1897.
[42] R. W. G. Wyckoff, Crystal Structure, Wiley, New York, 1965.
[43] J. M. Zuo, M. O’ Keeffe and J. C. H. Spence, “Direct observation of d holes and Cu-Cu bonding in Cu2O”, Nature vol. 401, pp. 49-52, 1999.
[44] K. H. Yoon, W. J. Choi, D. H. Kang, “Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate”, Thin Solid Films, vol. 372, pp. 205-256, 2000.
[45] T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, M.J. Chockalingam, “Galvanostatic deposition and characterization of cuprous oxide thin films”, Journal of Crystal Growth, vol. 216, pp. 304-310, 2000.
[46] W. Siripala, L.D.R.D. Perera, K.T.L. De Silva, J.K.D.S. Jayanetti, I.M. Dharmadasa, “Study of annealing effects of cuprous oxide grown by electrodeposition technique”, Solar Energy Materials & Solar Cells, vol. 44, pp. 251-260, 1996.
[47] M. Hara, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo and K. Domen, “Mechano-catalytic overall water splitting (II) nafion-deposited Cu2O”, Applied Catalysis A: General, vol. 190, pp. 35-42, 2000.
[48] T. Takata, S. Ikeda, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, “Mechano-catalytic overall water splitting on some oxide (II)”, Applied Catalysis A: General, vol. 200, pp. 255-262, 2000.
[49] N. Ozer, F. Tepehan, “Structure and optical properties of electrochromic copper oxide films prepared by reactive and conventional evaporation techniques”, Solar Energy Materials and Solar Cell, vol. 30, pp, 13-26, 1993.
[50] M. Ristov, G. J. Sinadinovski, M. Mitreski, “Chemically deposited Cu2O thin film as an oxygen pressure sensor”, Thin Solid Films, vol. 167, pp. 309-316, 1988.
[51] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, C. Commun, vol. 3, pp.357, 1998.
[52] R. Abe. M. Higashi, Z. Zou, K. Sayama, “Photocatalytic water splitting into H2 and O2 over R3TaO3 and R3NbO7(R=T,Yb,Gd,La):Effect of crystal structure on photocatalytic activity”, Journal of Physical Chemistry B, vol. 108, pp. 811-814, 2004.
[53] G. M. Kavoulakis and A. Mysyrowicz, Physical Review B 61, vol.24.
[54] Y. Bessekhouad, D. Robert, J. V. Weber, “Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions”, Catalysis Today, vol. 101, pp. 315-321, 2005.
[55] X. Nie, S. H. Wei, and S. B. Zhang, “First-principles study of transparent p-type conductive SrCu2O2 and related compounds”, Physical Review B, vol. 65, pp. 0751111-0751118, 2002.
[56] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa and H. Hosono, “Chemical Design and Thin Film Preparation of p-type Conductive Transparent Oxides”, Journal of Electroceramics, vol. 4, pp. 407-414, 2000.
[57] A. N. Banerjee, S. Kundoo, K. K. Chattopadhyay, “Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering”, Thin Solid Films, vol. 440, pp. 5-10, 2003.
[58] H. Matsumura, A. Fujii and T. Kitatani, “Properties of High-Mobility Cu2O Films Prepared by Thermal Oxidation of Cu at Low Temperatures”, Japanese Journal of Applied Physics, vol. 35, pp. 5631-5636, 1996.
[59] B. Balamurugan and B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, vol. 396, pp. 90-96, 2001.
[60] H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, Solar selective copper-black layers by an anodic oxidation process”, Solar Energy Materials, vol. 4, pp. 291, 1981.
[61] M. Ristov, G. J. Sinadinovski and M. Mitreski, “Chemically deposited Cu2O thin film as an oxygen pressure. sensor”, Thin Solid Films, vol. 167, pp. 309, 1988.
[62] K. Kawaguchi, R. Kita, M. Nishiyama and T. Morishita, “Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of Cu/O+ ”, Journal of Crystal Growth, vol. 143, pp. 221-226, 1994.
[63] Y. L. Liu, Y. C. Liu, R. Mu, H. Tang, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen and X. W. Fan, “The structural and optical properties of Cu2O films electrodeposited on different substrates”, Semiconductor Science and Technology, vol. 20, pp. 44-49, 2005.
[64] V. Georgieva, M. Ristov, “Electrodeposited cuprous oxide on indium tin oxide for solar applications”, Solar Energy Materials & Solar Cells, vol. 73, pp. 67-73, 2002.
[65] S. S. Jeong, A. Mittiga, E. Salza, A. Masci, S. Passerini, “Electrodeposited ZnO/Cu2O heterojunction solar cells”, Electrochimica Acta, vol. 53, pp. 2226-2231, 2008.
[66] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Applied Physics Letters, 88, no.163520, 2006.
[67] H. Tanaka, T. Shimakawa, T. Miyata, H. Sato, T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO–Cu2O heterojunctions”, Applied Surface Science 244, pp. 568-572, 2005.
[68] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsiehc and I. Chend, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta Materialia, vol. 57, pp. 53-56, 2007.
[69] J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto, S. J. Pachuta, “Properties of the shallow O-related acceptor level in ZnSe”, Applied Physics, vol. 78, pp. 5109-5119, 1995.
[70] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, Goutam K. Paul, T. Sakurai, “Thin film deposition of Cu2O and application for solar cells”, Solar Energy, vol. 80, pp. 715-722, 2006.
[71] S. Ishizuka, S. Kato, S. Okamoto, Y. Akimoto, K. 2002. “Hydrogen treatment for polycrystalline nitrogen-doped Cu2O thin film”, Journal of Crystal Growth, vol. 237-239, pp. 616-620, 2002.
[72] C. A. N. Fernando, P. H. C. de Silva, S. K. Wethasinha, I.M. Dharmadasa, T. Delsol, M. C. Simmonds, “Investigation of n-type Cu2O layers prepared by a low cost chemical method for use in photovoltaic thin film solar cells”, Renewable Energy, vol. 26, pp. 521-529, 2002.
[73] 行政院國家科學委員會精密儀器發展中心, 「真空技術與應用」, 全華科技圖書公司, 民國93年4月。
[74] 楊士賢, 「以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究」, 私立中原大學碩士論文, 民國97年2月。
[75] Brian Chapman, Glow Discharge Process, (John Wiley & Sons, Canada, 1980).
[76] D. M. Sun, “Kinetics of the growth of Al-oxidized films in a high-frequency oxygen plasma”, Vacuum, vol. 47, pp. 113-117, 1996.
[77] M. Mozetic, A. Zalar, U. Cvelbar and D. Babic, “AES characterization of thin oxide films growing on Al foil during oxygen plasma treatment”, Surface and Interface Analysis, vol. 36, pp. 986-998, 2004.
[78] N. Bellakhal, K. Draou, B. G. Chéron, J. L. Brisset, “Copper oxides formation by a low pressure RF oxygen plasma”, Materials Sciece Engineering, B41, pp. 206-216, 1996.
[79] 吳泰伯, 許樹恩, 「X光繞射原理與材料結構分析」, 中國材料科學學會, 民國95年9月。
[80] 何技殷, 「矽基奈米結構之製備與特性分析」, 碩士論文, 國立台灣科技大學, 民國98年7月。
[81] 溫文杰, 「電漿氣氛對射頻磁控濺鍍法沉積AZO薄膜特性影響之研究」, 碩士論文, 大同大學, 民國97年。
[82] 李世鴻, 「半導體物理及元件」, 台商圖書有限公司, 民國95年12月。
[83] Westwood, W. D. (1992) Handbook of Plasma Processing Technology, Springer-Verlag Berlin Heidelberg, Germany.
[84] T. Minami, T. Miyata, K. Ihara, Y. Minamino, S. Tsukada, “Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices”, Thin Solid Films, vol. 494, pp. 47-52, 2006.
[85] T. Minami, H. Tanka, T. Shimakawa, T. Miyata, H. Sato, “Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition”, Japanese Journal of Applied Physic, vol. 34, pp. 687-692, 2004.
[86] J. Cui, U. J. Gibson, “A simple two-step electrodeposition of Cu2O/ZnO Nanopillar solar cells”, J. Phys. Chem. C, vol.114, pp. 6408-6412, 2010.
[87] J. Katayama, K. Ito, M. Matsuoka, J. Tamaki, “Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition”, Journal of Applied Electrochemistry, vol. 34, pp. 687-692, 2004.
[88] T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh, I. C. Chen,” Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass template” Scripta Materialia, vol. 57, pp. 53-56, 2007.

QR CODE