簡易檢索 / 詳目顯示

研究生: 許芮瑜
Jui-Yu Hsu
論文名稱: 以硫化銅修飾硫共價碳化聚丙烯腈為鋰硫電池正極材料
Copper sulfide modified sulfur covalent-bonded carbonized polyacrylonitrile as a cathode material for lithium-sulfur battery
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 硫共價碳化聚丙烯腈硫化銅鋰硫電池全固態鋰硫電池
外文關鍵詞: S-cPAN, copper sulfide, lithium-sulfur battery, all-solid-state lithium-sulfur battery
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 VIII 表目錄 XII 第 1 章 鋰硫電池 1 1.1 前言與電池原理 1 1.2 鋰硫電池正極與改質 5 1.2.1 硫/碳複合材料 5 1.2.2 硫/聚合物材料 9 1.2.3 硫/金屬氧化物複合材料 11 1.2.4 硫化鋰正極材料 12 1.3 電解質 13 1.3.1 液態電解質 13 1.3.2 固態電解質 17 1.4 鋰硫電池的挑戰 19 1.5 研究動機 20 第 2 章 文獻回顧 21 2.1 硫為基底之正極材料 21 2.1.1 硫 21 2.1.2 Li2S 22 2.1.3 硫化物 23 2.2 硫-聚丙烯腈複合物(S-cPAN) 25 2.2.1 S-cPAN介紹 25 2.2.2 S-cPAN複合材料 27 2.3 鋰硫固態電池 32 2.3.1 硫化物固態電解質結構 33 2.3.2 正極材料設計 39 第 3 章 實驗方法及實驗儀器 43 3.1 實驗藥品 43 3.2 儀器設備 44 3.3 電極材料合成與極片製備 46 3.3.1 S-cPAN之合成 46 3.3.2 CuS/S-cPAN與nano CuS/S-cPAN製備 46 3.3.3 極片製備 47 3.4 材料分析與鑑定 49 3.4.1 元素分析儀(Elemental Analyzer, EA) 49 3.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 49 3.4.3 X射線繞射儀(X-ray Diffraction, XRD) 50 3.5 電化學效能測試 52 3.5.1 循環伏安法(Cyclic Voltammetry, CV) 53 3.5.2 電池充放電測試 54 第 4 章 硫共價碳化聚丙烯腈正極複合材料 55 4.1 S-cPAN與其複合物之特性 55 4.1.1 表面形貌觀察 55 4.1.2 結構鑑定 58 4.1.3 組成分析 60 4.2 CuS/S-cPAN複合正極之探討 62 4.2.1 不同持溫時間之分析 62 4.2.2 不同Cu(OH)2添加量之探討 65 4.3 電化學分析 69 4.3.1 電化學表徵 69 4.3.2 不同c-rate之電化學表現 71 4.3.3 電化學表現 73 4.4 小結 77 第 5 章 硫-碳化聚丙烯腈複合正極應用於硫化物電解質之全固態電池測試 79 5.1 使用nano CuS/S-cPAN進行全固態電池(ASSB)之探討 79 5.1.1 高熱穩定性之黏著劑 79 5.1.2 改善SEI 80 5.1.3 改善界面接觸 81 5.1.4 以不同黏著劑比例製備正極材料 82 5.2 小結 84 第 6 章 結論與未來展望 86 參考文獻 90

    1. 太平洋綠能, P. 解析台灣用電結構. https://blog.pgesolar.com.tw/2021/03/24/%E5%8F%B0%E7%81%A3%E7%94%A8%E9%9B%BB%E7%B5%90%E6%A7%8B.
    2. Whittingham, M. S., Lithium batteries and cathode materials. Chemical reviews 2004, 104 (10), 4271-4302.
    3. Zhou, J.; Notten, P., Studies on the degradation of Li-ion batteries by the use of microreference electrodes. Journal of power Sources 2008, 177 (2), 553-560.
    4. Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H., Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2 (1), 132-154.
    5. Jiang, M.; Ma, Y.; Chen, J.; Jiang, W.; Yang, J., Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale 2021, 13 (7), 3937-3947.
    6. Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S., Rechargeable lithium–sulfur batteries. Chemical reviews 2014, 114 (23), 11751-11787.
    7. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J., Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angewandte Chemie International Edition 2013, 52 (50), 13186-13200.
    8. Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y., Designing high-energy lithium–sulfur batteries. Chemical society reviews 2016, 45 (20), 5605-5634.
    9. Su, J.; Wu, X.-L.; Lee, J.-S.; Kim, J.; Guo, Y.-G., A carbon-coated Li 3 V 2 (PO 4) 3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. Journal of Materials Chemistry A 2013, 1 (7), 2508-2514.
    10. Yan, Y.; Yin, Y.-X.; Xin, S.; Guo, Y.-G.; Wan, L.-J., Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications 2012, 48 (86), 10663-10665.
    11. Xin, S.; Guo, Y.-G.; Wan, L.-J., Nanocarbon networks for advanced rechargeable lithium batteries. Accounts of chemical research 2012, 45 (10), 1759-1769.
    12. Wu, F.; Chen, J.; Chen, R.; Wu, S.; Li, L.; Chen, S.; Zhao, T., Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. The Journal of Physical Chemistry C 2011, 115 (13), 6057-6063.
    13. Fu, Y.; Manthiram, A., Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium–sulfur batteries. The Journal of Physical Chemistry C 2012, 116 (16), 8910-8915.
    14. Han, S.-C.; Song, M.-S.; Lee, H.; Kim, H.-S.; Ahn, H.-J.; Lee, J.-Y., Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries. Journal of the electrochemical society 2003, 150 (7), A889.
    15. Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J., High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chemical Communications 2012, 48 (34), 4097-4099.
    16. Zhao, Y.; Wu, W.; Li, J.; Xu, Z.; Guan, L., Encapsulating MWNTs into hollow porous carbon nanotubes: a tube‐in‐tube carbon nanostructure for high‐performance lithium‐sulfur batteries. Advanced Materials 2014, 26 (30), 5113-5118.
    17. Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H., Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano letters 2011, 11 (7), 2644-2647.
    18. Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angewandte Chemie International Edition 2012, 51 (15), 3591-3595.
    19. Zhou, W.; Xiao, X.; Cai, M.; Yang, L., Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano letters 2014, 14 (9), 5250-5256.
    20. Wang, J.; Chen, J.; Konstantinov, K.; Zhao, L.; Ng, S.; Wang, G.; Guo, Z.; Liu, H., Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica acta 2006, 51 (22), 4634-4638.
    21. Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Saraf, L. V.; Nie, Z.; Exarhos, G. J.; Liu, J., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium‐sulfur batteries with long cycle life. Advanced materials 2012, 24 (9), 1176-1181.
    22. Wang, L.; He, X.; Li, J.; Gao, J.; Guo, J.; Jiang, C.; Wan, C., Analysis of the synthesis process of sulphur–poly (acrylonitrile)-based cathode materials for lithium batteries. Journal of materials chemistry 2012, 22 (41), 22077-22081.
    23. Song, M.-S.; Han, S.-C.; Kim, H.-S.; Kim, J.-H.; Kim, K.-T.; Kang, Y.-M.; Ahn, H.-J.; Dou, S.; Lee, J.-Y., Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries. Journal of the Electrochemical Society 2004, 151 (6), A791.
    24. Choi, Y.; Jung, B.; Lee, D.; Jeong, J.; Kim, K.; Ahn, H.; Cho, K.; Gu, H., Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Physica Scripta 2007, 2007 (T129), 62.
    25. Nagao, M.; Hayashi, A.; Tatsumisago, M.; Ichinose, T.; Ozaki, T.; Togawa, Y.; Mori, S., Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries. Journal of Power Sources 2015, 274, 471-476.
    26. Gao, J.; Lowe, M. A.; Kiya, Y.; Abruna, H. D., Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C 2011, 115 (50), 25132-25137.
    27. Zhang, S. S., Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources 2013, 231, 153-162.
    28. Choi, J.-W.; Kim, J.-K.; Cheruvally, G.; Ahn, J.-H.; Ahn, H.-J.; Kim, K.-W., Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochimica Acta 2007, 52 (5), 2075-2082.
    29. Kodama, D.; Kanakubo, M.; Kokubo, M.; Hashimoto, S.; Nanjo, H.; Kato, M., Density, viscosity, and solubility of carbon dioxide in glymes. Fluid phase equilibria 2011, 302 (1-2), 103-108.
    30. Scheers, J.; Fantini, S.; Johansson, P., A review of electrolytes for lithium–sulphur batteries. Journal of Power Sources 2014, 255, 204-218.
    31. Zhang, S. S., Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta 2012, 70, 344-348.
    32. Zhang, B.; Qin, X.; Li, G.; Gao, X., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy & Environmental Science 2010, 3 (10), 1531-1537.
    33. Yuan, L.; Feng, J.; Ai, X.; Cao, Y.; Chen, S.; Yang, H., Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochemistry Communications 2006, 8 (4), 610-614.
    34. Kim, S.; Jung, Y.; Park, S.-J., Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes. Electrochimica acta 2007, 52 (5), 2116-2122.
    35. Zhao, Y.; Zhang, Y.; Gosselink, D.; Sadhu, M.; Cheang, H.-J.; Chen, P., Polymer electrolytes for lithium/sulfur batteries. Membranes 2012, 2 (3), 553-564.
    36. Ryu, H.-S.; Ahn, H.-J.; Kim, K.-W.; Ahn, J.-H.; Lee, J.-Y., Discharge process of Li/PVdF/S cells at room temperature. Journal of Power Sources 2006, 153 (2), 360-364.
    37. Scrosati, B., Recent advances in lithium solid state batteries. Journal of Applied Electrochemistry 1972, 2 (3), 231-238.
    38. He, J.; Manthiram, A., A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Materials 2019, 20, 55-70.
    39. Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M., All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochemistry communications 2003, 5 (8), 701-705.
    40. Nagao, M.; Imade, Y.; Narisawa, H.; Kobayashi, T.; Watanabe, R.; Yokoi, T.; Tatsumi, T.; Kanno, R., All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte. Journal of Power Sources 2013, 222, 237-242.
    41. Nagata, H.; Chikusa, Y., A lithium sulfur battery with high power density. Journal of Power Sources 2014, 264, 206-210.
    42. Zhang, Y.; Sun, Y.; Peng, L.; Yang, J.; Jia, H.; Zhang, Z.; Shan, B.; Xie, J., Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Materials 2019, 21, 287-296.
    43. Hayashi, A.; Ohtsubo, R.; Ohtomo, T.; Mizuno, F.; Tatsumisago, M., All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. Journal of Power Sources 2008, 183 (1), 422-426.
    44. Hakari, T.; Hayashi, A.; Tatsumisago, M., Li2S‐Based Solid Solutions as Positive Electrodes with Full Utilization and Superlong Cycle Life in All‐Solid‐State Li/S Batteries. Advanced Sustainable Systems 2017, 1 (6), 1700017.
    45. Lin, Z.; Liu, Z.; Fu, W.; Dudney, N. J.; Liang, C., Lithium polysulfidophosphates: a family of lithium‐conducting sulfur‐rich compounds for lithium–sulfur batteries. Angewandte Chemie International Edition 2013, 52 (29), 7460-7463.
    46. Xing, C.; Zhang, D.; Cao, K.; Zhao, S.; Wang, X.; Qin, H.; Liu, J.; Jiang, Y.; Meng, L., In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (16), 8742-8749.
    47. Zhang, Q.; Peng, G.; Mwizerwa, J. P.; Wan, H.; Cai, L.; Xu, X.; Yao, X., Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. Journal of Materials Chemistry A 2018, 6 (25), 12098-12105.
    48. Zhang, S. S., Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7 (7), 4588-4600.
    49. Wang, J.; Yang, J.; Xie, J.; Xu, N., A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Advanced materials 2002, 14 (13‐14), 963-965.
    50. Pu, W.; He, X.; Wang, L.; Tian, Z.; Jiang, C.; Wan, C., Sulfur composite cathode materials: Comparative characterization of polyacrylonitrile precursor. Ionics 2007, 13 (4), 273-276.
    51. Konarov, A.; Gosselink, D.; Doan, T. N. L.; Zhang, Y.; Zhao, Y.; Chen, P., Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries. Journal of Power Sources 2014, 259, 183-187.
    52. Huang, C.-J.; Cheng, J.-H.; Su, W.-N.; Partovi-Azar, P.; Kuo, L.-Y.; Tsai, M.-C.; Lin, M.-H.; Jand, S. P.; Chan, T.-S.; Wu, N.-L., Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries. Journal of Power Sources 2021, 492, 229508.
    53. Yin, L.; Wang, J.; Yang, J.; Nuli, Y., A novel pyrolyzed polyacrylonitrile-sulfur@ MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry 2011, 21 (19), 6807-6810.
    54. Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y., Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy Environmental Science 2012, 5 (5), 6966-6972.
    55. Wang, J.; Yin, L.; Jia, H.; Yu, H.; He, Y.; Yang, J.; Monroe, C. W., Hierarchical sulfur‐based cathode materials with long cycle life for rechargeable lithium batteries. ChemSusChem 2014, 7 (2), 563-569.
    56. Zhang, Y.; Zhao, Y.; Yermukhambetova, A.; Bakenov, Z.; Chen, P., Ternary sulfur/polyacrylonitrile/Mg 0.6 Ni 0.4 O composite cathodes for high performance lithium/sulfur batteries. Journal of Materials Chemistry A 2013, 1 (2), 295-301.
    57. Cheng, X.-B.; Zhao, C.-Z.; Yao, Y.-X.; Liu, H.; Zhang, Q., Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5 (1), 74-96.
    58. McGrogan, F. P.; Swamy, T.; Bishop, S. R.; Eggleton, E.; Porz, L.; Chen, X.; Chiang, Y. M.; Van Vliet, K. J., Compliant Yet Brittle Mechanical Behavior of Li2S–P2S5 Lithium‐Ion‐Conducting Solid Electrolyte. Advanced Energy Materials 2017, 7 (12), 1602011.
    59. Kato, A.; Yamamoto, M.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Mechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Applied Energy Materials 2018, 1 (3), 1002-1007.
    60. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environmental Science 2014, 7 (2), 627-631.
    61. Nagao, M.; Hayashi, A.; Tatsumisago, M.; Kanetsuku, T.; Tsuda, T.; Kuwabata, S., In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li 2 S–P 2 S 5 solid electrolyte. Physical Chemistry Chemical Physics 2013, 15 (42), 18600-18606.
    62. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
    63. Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications 2003, 5 (2), 111-114.
    64. Murayama, M.; Kanno, R.; Kawamoto, Y.; Kamiyama, T., Structure of the thio-LISICON, Li4GeS4. Solid State Ionics 2002, 154, 789-794.
    65. Kanno, R.; Murayama, M., Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society 2001, 148 (7), A742.
    66. Weber, D. A.; Senyshyn, A.; Weldert, K. S.; Wenzel, S.; Zhang, W.; Kaiser, R.; Berendts, S.; Janek, J. r.; Zeier, W. G., Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chemistry of Materials 2016, 28 (16), 5905-5915.
    67. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 1-7.
    68. Bai, Y.; Zhao, Y.; Li, W.; Meng, L.; Bai, Y.; Chen, G.; Engineering, New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping. ACS Sustainable Chemistry 2019, 7 (15), 12930-12937.
    69. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie 2008, 120 (4), 767-770.
    70. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    71. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting solid‐state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angewandte Chemie International Edition 2019, 58 (26), 8681-8686.
    72. Zhu, X.; Wen, Z.; Gu, Z.; Lin, Z., Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. Journal of power sources 2005, 139 (1-2), 269-273.
    73. Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A., Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy 2019, 4 (5), 365-373.
    74. Liang, X.; Wen, Z.; Liu, Y.; Zhang, H.; Huang, L.; Jin, J., Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. Journal of Power Sources 2011, 196 (7), 3655-3658.
    75. Yao, X.; Liu, D.; Wang, C.; Long, P.; Peng, G.; Hu, Y.-S.; Li, H.; Chen, L.; Xu, X., High-energy all-solid-state lithium batteries with ultralong cycle life. Nano letters 2016, 16 (11), 7148-7154.
    76. Han, F.; Yue, J.; Fan, X.; Gao, T.; Luo, C.; Ma, Z.; Suo, L.; Wang, C., High-performance all-solid-state lithium–sulfur battery enabled by a mixed-conductive Li2S nanocomposite. Nano letters 2016, 16 (7), 4521-4527.
    77. 國立台灣大學貴重儀器中心 NCHS元素分析儀 EA000200. https://www.hic.ch.ntu.edu.tw/EA/ea_Reference.html#top.
    78. Zhu, F.-Y.; Wang, Q.-Q.; Zhang, X.-S.; Hu, W.; Zhao, X.; Zhang, H.-X., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology 2014, 25 (18), 185705.
    79. Epp, J., X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier: 2016; pp 81-124.
    80. Sun, K.; Su, D.; Zhang, Q.; Bock, D. C.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S.; Gan, H., Interaction of CuS and sulfur in Li-S battery system. Journal of The Electrochemical Society 2015, 162 (14), A2834.
    81. Zhang, Y.; Zhao, Y.; Bakenov, Z.; Babaa, M.-R.; Konarov, A.; Ding, C.; Chen, P., Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries. Journal of the Electrochemical Society 2013, 160 (8), A1194.
    82. Kalimuldina, G.; Taniguchi, I., Electrochemical properties of stoichiometric CuS coated on carbon fiber paper and Cu foil current collectors as cathode material for lithium batteries. Journal of Materials Chemistry A 2017, 5 (15), 6937-6946.
    83. Wang, Z.; Zhang, X.; Zhang, Y.; Li, M.; Qin, C.; Bakenov, Z., Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries. Metals 2018, 8 (4), 252.
    84. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical reviews 2019, 120 (14), 6820-6877.
    85. Tan, D. H.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Letters 2019, 4 (10), 2418-2427.
    86. Azimi, N.; Xue, Z.; Rago, N. D.; Takoudis, C.; Gordin, M. L.; Song, J.; Wang, D.; Zhang, Z., Fluorinated electrolytes for Li-S battery: suppressing the self-discharge with an electrolyte containing fluoroether solvent. Journal of the Electrochemical Society 2014, 162 (1), A64.
    87. Hu, T.-S.; Hong, P.-K.; Saikia, D.; Kao, H.-M.; Chen, M.-C., A comparative study on the effects of salt and filler on transport and structural properties of organic–inorganic hybrid electrolytes. Ionics 2014, 20 (11), 1561-1571.
    88. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. r., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
    89. Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez del Amo, J. M.; Singh, G.; Llordés, A.; Kilner, J., Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS applied materials interfaces 2017, 9 (4), 3808-3816.
    90. Zhou, D.; Liu, R.; He, Y. B.; Li, F.; Liu, M.; Li, B.; Yang, Q. H.; Cai, Q.; Kang, F., SiO2 hollow nanosphere‐based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Advanced Energy Materials 2016, 6 (7), 1502214.
    91. Gao, Y.; Wang, D.; Li, Y. C.; Yu, Z.; Mallouk, T. E.; Wang, D., Salt‐Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface. Angewandte Chemie International Edition 2018, 57 (41), 13608-13612.
    92. Wang, L. P.; Zhang, X. D.; Wang, T. S.; Yin, Y. X.; Shi, J. L.; Wang, C. R.; Guo, Y. G., Ameliorating the Interfacial Problems of Cathode and Solid‐State Electrolytes by Interface Modification of Functional Polymers. Advanced Energy Materials 2018, 8 (24), 1801528.

    無法下載圖示 全文公開日期 2024/09/01 (校內網路)
    全文公開日期 2024/09/01 (校外網路)
    全文公開日期 2024/09/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE