簡易檢索 / 詳目顯示

研究生: 劉鐘穗
Chung-suei Liou
論文名稱: 新型含氟官能基苯並咪唑鋰鹽合成及其用於鋰離子電池之研究
Synthesis and characterics of benzimidazole lithium salts containing fluorine functional group and its application as an electrolyte additive of lithium-ion battery
指導教授: 王復民
Fu-ming Wang
口試委員: 黃炳照
Bing-joe Hwang
吳弘俊
Hong-Chun Wu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 161
中文關鍵詞: 苯並咪唑電解液添加劑鋰離子電池鈍性膜
外文關鍵詞: benzimidazole, electrolyte, additive
相關次數: 點閱:394下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鋰離子電池構成材料中,於正負極之間的電解液是扮演著讓正負極之間的鋰離子互相傳遞的重要角色。在電解液中,目前常用的鋰鹽為LiPF6,不過由於其安全性不佳,使其在應用上有許多的危險。
    本研究探討以苯並咪唑結構為主體的鋰鹽,做為電解液之添加劑來改變電解液配方,以開發出具有官能基功能導向之耐高電壓且高安全性電解液,以改良現今電解液之缺點。由於苯並咪唑鋰鹽在一般電解液中的溶解度不佳,因此本研究利用在結構上導入氟官能基,藉由氟官能基的高電負度來幫助鋰鹽的解離,提升其溶解度,並提升電池的性能。
    由研究結果可發現,添加苯並咪唑鋰鹽使得於電解液中的鋰離子濃度增加,因而導電度提升。由電解液循環伏安測試中得知,有添加鋰鹽之電解液不可逆比為61%,低於一般商用電解液(80%),顯示添加劑降低了電解液之反應不可逆性。在電池方面,由負極半電池的測試結果發現,添加苯並咪唑鋰鹽的電池其電容量在高溫多圈之後,尚有300mAh/g以上,反觀一般電解液衰退快速,只剩約200mAh/g,電池壽命較短。在交流阻抗測試上,有添加鋰鹽之正極半電池的Rct為55,遠低於一般電解液之Rct(76.3),表示有添加添加劑之電池由於鋰鹽與PF5反應,產生pentafluorophosphate benzimidazole使得PF5濃度降低,因而降低電池的電阻有利於離子的傳導。
    從負極電極表面分析SEM圖發現,有添加苯並咪唑添加劑之電解液所形成之SEI膜較無一般電解液的厚實,在離子傳導上,有利於電化學反應之進行。


    Electrolyte plays a critical role in initiating electrochemical reactions of Li-ion battery, which is used to diffuse ions between the anode and cathode. LiPF6 is the most popular salt into lithium ion battery; however, it’s not safe enough for widely applications.
    This study synthesizes a new compound, constructed by benzimidazole structure, and is used to an electrolyte additive for maintainy the chemical stability of LiPF6. Prior research shows the solubility of benzimidazole lithium salt is not perfect enough in common carbonate solvents. This study synthesis a novel benzimidazole lithium salt containing fluorine functional group to solve the solubility problem.
    According to the results, the electrolyte containing fluoro-benzimidazole salt increases the ionic conductivity of electrolyte. Owing to the molar concentration of Li ion was increased. From cyclic voltammetry measurement of the electrolyte, the addition of fluoro-benzimidazole salt eliminates the polarization of the electrochemical reaction and shows good reversible ratio. The irreversible ratio of the electrolyte with fluoro- benzimidazole was decreased from 80% to 61%. The anode half cell shows the addition of fluoro-benzimidazole maintain the battery performance (~300mAh/g) at 60℃ after several cycles, compared to the common electrolyte(~200mAh/g). The impedance test shows that the Rct has decreased to 55 while the electrolyte contains fluoro-benzimidazole, and the common electrolyte shows 76.3. It is because the benzimidazole lithium salt interacts with PF5 and generates pentafluorophosphate benzimidazole, inhibiting the PF5 side reactions.
    The electrolyte containing fluoro-benzimidazole lithium salt performs a good performance, and can be used into lithium ion battery.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1前言 1 1.2鋰離子電池原理與介紹 4 1.2.1正極 6 1.2.2負極 10 1.2.3隔離膜 12 1.2.4電解液 13 第二章 電解液文獻回顧 17 2.1添加劑 17 2.1.1 SEI形成改良添加劑 18 2.1.2正極保護添加劑 26 2.1.3減少鋰金屬沉積之添加劑 28 2.1.4安全性添加劑 29 2.1.5鋰鹽穩定劑 34 2.2鋰鹽 37 2.2.1 LiBOB 37 2.2.2 Li2B12F12 39 2.3 Benzimidazole vs Imidazole 41 2.4研究動機 47 第三章 實驗方法與儀器設備 48 3.1實驗藥品 48 3.2儀器設備 49 3.3材料合成鑑定分析 51 3.3.1質譜儀(Mass Spectrometry) 51 3.3.2核磁共振儀分析(NMR) 52 3.4電解液性能測試 53 3.4.1溶解度(Solubility) 53 3.4.2離子導電度(Ionic conductivity) 53 3.4.3循環伏安法(Cyclic voltammogram(telfon)) 54 3.4.4微分掃描熱卡分析儀(Differential Scanning Calori-meter) 55 3.5電化學性能測試 57 3.5.1半電池循環伏安法(Cyclic voltammogram(for half cell)) 58 3.5.2電池測試(Battery test) 59 3.5.3交流阻抗分析(Electrochemical impedance spectroscopy) 60 3.6電極表面分析 63 3.6.1 X射線光電子能譜學(X ray photoelectron spectroscopy) 63 3.6.2掃描電子顯微鏡(Scanning electron microscope) 65 3.6.3能量散佈分析儀(Energy-dispersive X-ray spectroscopy) 66 第四章結果與討論 67 4.1 鋰鹽合成 67 4.1.1 Synthesis of o-Phenyleneflurordiamine 67 4.1.2 Synthesis of 1-fluoro-benzimidazole 72 4.1.3 Synthesis of Lithium Benzimidazole 77 4.2 電解液性能測試 83 4.2.1溶解度(Solubility) 84 4.2.2 離子導電度(Ionic Conductivity) 85 4.2.3循環伏安法(Cycle voltammetry) 90 4.2.4差示掃描量熱法(Differential Scanning Calorimeter) 94 4.3電化學動力學分析 96 4.3.1氧化反應(anodic reaction) 97 4.3.2還原反應(cathodic reaction) 104 4.4電池性能測試 110 4.4.1正極半電池耐高壓特性 110 4.4.2正極半電池交流阻抗分析 118 4.4.3負極半電池特性(室溫與高溫) 121 4.4.4負極半電池之交流阻抗分析 134 4.4.5全電池特性 137 4.5 電極表面分析 142 4.5.1 X射線光電子能譜學(X-ray photoelectron spectroscopy) 143 4.5.2掃描電子顯微鏡(Scanning electron microscope) 150 4.5.3能量散佈分析儀(Energy-dispersive X-ray spectroscopy) 152 第五章:結論 153 5.1 鋰鹽之改質 153 5.2 對於電池的影響 154 第六章:未來工作展望 156 參考資料 157

    1. WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
    2. Goodenough, J.B., K. Mizushima, and T. Takeda, Solid-Solution Oxides for Storage-Battery Electrodes. Japanese Journal of Applied Physics, 1980. 19(S3): p. 305.
    3. Wikipedia. 2006年新力筆記型電腦鋰電池全球召回事件. 2014; Available from: http://zh.wikipedia.org/wiki/2006%E5%B9%B4%E6%96%B0%E5%8A%9B%E7%AD%86%E8%A8%98%E5%9E%8B%E9%9B%BB%E8%85%A6%E9%8B%B0%E9%9B%BB%E6%B1%A0%E5%85%A8%E7%90%83%E5%8F%AC%E5%9B%9E%E4%BA%8B%E4%BB%B6.
    4. Wikipedia. 波音787. 2013; Available from: http://zh.wikipedia.org/wiki/%E6%B3%A2%E9%9F%B3787.
    5. Boeing to investigate Air India Dreamliner 'panel fall'. BBC News 2013; Available from: http://www.bbc.com/news/world-asia-india-24546020.
    6. Dreamliner: Japan and US probe battery maker. BBC News 2013; Available from: http://www.bbc.com/news/business-21115383.
    7. Wikipedia. 鋰離子電池. 2014; Available from: http://zh.wikipedia.org/wiki/%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0.
    8. 李源弘;雷永泉, 新能源材料.
    9. 黃可龍;王兆翔;劉素琴, 鋰離子電池原理與技術. 2010.
    10. 全球分析網. 電池的原理和分類. 2012; Available from: http://zx.qqfx.com.cn/news/90148.html.
    11. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    12. Kang, S.G., et al., Electrochemical and structural properties of HT-LiCoO2 and LT-LiCoO2 prepared by the citrate sol-gel method. Solid State Ionics, 1999. 120(1–4): p. 155-161.
    13. 姚慶意, 工業材料雜誌, 1997(131): p. 161.
    14. Padhi, A.K., et al., Effect of Structure on the Fe3 +  / Fe2 +  Redox Couple in Iron Phosphates. Journal of The Electrochemical Society, 1997. 144(5): p. 1609-1613.
    15. 呂學隆, 鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展. 2011.
    16. 林佑彥, 由花生殼製備鋰離子電池高電容量負極碳材料. 國立中央大學化學工程與材料工程研究所碩士論文, 2003.
    17. Baohua Li, R.G., Kaixi Li,Chunxiang Lu,Licheng Ling, Electrochemical properties of MCMBs as anode for lithium ion battery. Fuel Chemistry Division Preprints, 2002.
    18. 台灣塑膠公司塑膠事業部技術處, 鋰離子電池機能性電解液開發及應用.
    19. 李治宏;龔丹誠, 材料世界網, 2013. 102(12).
    20. 陳仕玉;王兆翔;趙海雷;陳立泉, 鋰離子電池安全性添加劑. 化工進展, 2009. 21.
    21. Scheers, J., et al., Benzimidazole and imidazole lithium salts for battery electrolytes. Journal of Power Sources, 2010. 195(18): p. 6081-6087.
    22. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 2011. 工業材料雜誌.
    23. 鄭錦淑;王復民, 鋰離子電池添加劑之發展. 化工, 2011. 58(5).
    24. Goodenough, J.B. and Y. Kim, Challenges for rechargeable batteries. Journal of Power Sources, 2011. 196(16): p. 6688-6694.
    25. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    26. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006: p. p. 1379-1394.
    27. J.C.Burns, R.P., K.J.Nelson,N.N.Sinha,Adil Kassam,B.M.Way, Studies of the Effect of Varying Vinylene Carbonate(VC )Content in Lithium Ion Cells on Cycling Performance and Cell Impedance. Journal of The Electrochemical Society, 2013. 160(10): p. A1668-A1674.
    28. D.Aurbach, K.G., B.Markovsky,Y.Gofer,M.Schmidt,U.Heider, On the use of vinylene carbonate(VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochiica Acta, 2002. 47: p. 1423-1439.
    29. M.C.Smart, B.V.R., K.B.Chin,W.C.West,and S.Surampudi, The 202nd meeting of Electrochemical Society 2002.
    30. Chung, S.-Y., Bloking, Jason T,Chiang, Yet-Ming, Electronically conductive phospho-olivines as lithium storage electrodes. 2002/10. 1(2): p. 123-128.
    31. Ein‐Eli, Y., S.R. Thomas, and V.R. Koch, The Role of  SO 2 as an Additive to Organic Li‐Ion Battery Electrolytes. Journal of The Electrochemical Society, 1997. 144(4): p. 1159-1165.
    32. Wang, C., et al., Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources, 1998. 74(1): p. 142-145.
    33. Liu, J., et al., Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries. Electrochemistry Communications, 2007. 9(3): p. 475-479.
    34. Zhang, S.S., K. Xu, and T.R. Jow, LiBOB-based gel electrolyte Li-ion battery for high temperature operation. Journal of Power Sources, 2006. 154(1): p. 276-280.
    35. Zhang, S.S., K. Xu, and T.R. Jow, Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating. Journal of Power Sources, 2004. 129(2): p. 275-279.
    36. Xu, M., et al., Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. Journal of Power Sources, 2011. 196(16): p. 6794-6801.
    37. Wang, E., et al., Stability of Lithium Ion Spinel Cells. III. Improved Life of Charged Cells. Journal of The Electrochemical Society, 2000. 147(11): p. 4023-4028.
    38. Saidi, M.Y., Gao,F.,Barker,J.,Scordilis-Kelley C, U.S. Patent, 1998.
    39. Chen, Z., et al., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta, 2006. 51(16): p. 3322-3326.
    40. Ishikawa, M., M. Morita, and Y. Matsuda, In situ scanning vibrating electrode technique for lithium metal anodes. Journal of Power Sources, 1997. 68(2): p. 501-505.
    41. Rauh, R.D. and S.B. Brummer, The effect of additives on lithium cycling in propylene carbonate. Electrochimica Acta, 1977. 22(1): p. 75-83.
    42. Hirai, T., I. Yoshimatsu, and J.i. Yamaki, Effect of Additives on Lithium Cycling Efficiency. Journal of The Electrochemical Society, 1994. 141(9): p. 2300-2305.
    43. Eweka, E., J.R. Owen, and A. Ritchie, Electrolytes and additives for high efficiency lithium cycling. Journal of Power Sources, 1997. 65(1–2): p. 247-251.
    44. 張千玉;高晶;劉銳;馬曉華, 鋰離子電池過充保護添加劑的進展. Battery Bimonthly, 20009. 39(2).
    45. Moshurchak, L.M., C. Buhrmester, and J.R. Dahn, Spectroelectrochemical Studies of Redox Shuttle Overcharge Additive for LiFePO4-Based Li-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(6): p. A1279-A1282.
    46. Dahn, J.R., et al., High-Rate Overcharge Protection of LiFePO4-Based Li-Ion Cells Using the Redox Shuttle Additive 2,5-Ditertbutyl-1,4-dimethoxybenzene. Journal of The Electrochemical Society, 2005. 152(6): p. A1283-A1289.
    47. Abe, K., et al., Functional electrolytes: Novel type additives for cathode materials, providing high cycleability performance. Journal of Power Sources, 2006. 153(2): p. 328-335.
    48. Lee, H., et al., Co-Use of Cyclohexyl Benzene and Biphenyl for Overcharge Protection of Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2006. 9(6): p. A307-A310.
    49. Tang Z Y, H.Y., Zhu Q S, electrochemistry, 2006. 12(4): p. 383-393.
    50. Xiang, H.F., et al., Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries. Journal of Power Sources, 2007. 174(1): p. 335-341.
    51. Pradanawati, S.A., F.-M. Wang, and J. Rick, In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries. Electrochimica Acta, 2014. 135(0): p. 388-395.
    52. J.Barthel, A.S., H.J.Gores, J.Electrochem.Soc, 2000. 147.
    53. J.Barthel, R.B., H.J.Gores,M.Schmidt,M.Wuhr, J.Electrochem.Soc, 1997. 144.
    54. J.Barthel, R.B., E.Carl,H.J.Gores, J.Electrochem.Soc, 1996. 143.
    55. 蒲薇華;何向明;王莉;萬春榮;姜長印, 鋰離子電池LiBOB電解質鹽研究. 化學進展, 2006. 18(12).
    56. Hayamizu, K., A. Matsuo, and J. Arai, A Divalent Lithium Salt Li2B12F12 Dissolved in Propylene Carbonate Studied by NMR Methods. Journal of The Electrochemical Society, 2009. 156(9): p. A744-A750.
    57. S.V.lvanov, W.J.C., Jr and W.H.Bailey, Process for the fluorination of boron hydrides. US Patent, 2004. 6781005.
    58. Arai, J., et al., A novel high temperature stable lithium salt (Li2B12F12) for lithium ion batteries. Journal of Power Sources, 2009. 193(2): p. 851-854.
    59. Niedzicki, L., et al., New type of imidazole based salts designed specifically for lithium ion batteries. Electrochimica Acta, 2010. 55(4): p. 1450-1454.
    60. Johansson, P., et al., Spectroscopic and theoretical study of the 1,2,3-Triazole-4,5-dicarbonitrile anion and its lithium ion pairs. Solid State Ionics, 2003. 156(1–2): p. 129-139.
    61. Barbarich, T.J. and P.F. Driscoll A Lithium Salt of a Lewis Acid-Base Complex of Imidazolide for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2003. 6(6): p. A113-A116.
    62. Tasaki, K., et al., Decomposition of LiPF6and Stability of  PF 5 in Li-Ion Battery Electrolytes: Density Functional Theory and Molecular Dynamics Studies. Journal of The Electrochemical Society, 2003. 150(12): p. A1628-A1636.
    63. Niedzicki, L., et al., Liquid electrolytes based on new lithium conductive imidazole salts. Journal of Power Sources, 2011. 196(3): p. 1386-1391.
    64. 陳盈助, 電解液配方對鋰離子電池性能之研究. 國立成功大學化學工程研究所碩士論文, 2002.
    65. Quan-Chao Zhuang, X.-Y.Q., Shou-Dong Xu,Ying-Huai Qiang and Shi-Gang Sun, Diagnosis of Electrochemical Impedance Spectroscopy in Lithium-Ion Batteries.
    66. Kimiyuki Shibuya, T.O., Takayuki Matsuda,Toru Miura, 2,4-Bis(trifluoroethoxy)pyridine compound and drug containing the compound. United States Patent, 2007.
    67. Wu, H.-Y., et al., Electrochromic material containing unsymmetrical substituted N,N,N′,N′-tetraaryl-1,4-phenylenediamine: Synthesis and their optical, electrochemical, and electrochromic properties. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(7): p. 1469-1476.
    68. Rupinder Kaur, G.A., Amrinder Singh, Synthesis and Characterization of Some Novel Alkyl-2n-butyl-[4'(2"-carboxyphenyl-1"-yl)benzyl]benzimidazole-5-sulphonates. International Journal of Pharmaceutical &Biological Archives, 2010: p. 62-68.
    69. Jitender S.Saggu, R.S., Harish Dureja,Vipin Kumar, Benzimidazoles with biphenyls:Synthesis of 5-substituted-2-n-propyl-1-[(2'-carboxybiphenyl-4-yl-)methyl]benzimidazoles. The Journal of the Indian Institute of Science, 2002: p. 177-182.
    70. Fu-Ming Wang, M.-H.Y., Yi-Ju Hsiao,Ying Tsai,Bing-Joe Hwang,Yung-Yun Wang and Chi-Chao Wan, Aging Effects to Solid Electrolyte Interface(SEI) Membrane Formation and the Performance Analysis of Lithium Ion Batteries. Int.J.Electrochem.Sci: p. 1014-1026.
    71. Oldham, K.B., Analytical expressions for the reversible Randles-Sevcik function. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 105(2): p. 373-375.
    72. Zheng Ming Sen, M.J., Dong Quan feng,Lin Zu geng, Formation of SEI layer on LiCoO2 electrode and the Li ion diffusion kinetics. Battery Bimonthly, 2007. 37(3): p. 199-200.
    73. Verma, P., P. Maire, and P. Novak, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 2010. 55(22): p. 6332-6341.
    74. Wang, F.-M., et al., Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 2009. 54(12): p. 3344-3351.
    75. Wang, F.-M., et al., Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery. Journal of Power Sources, 2011. 196(23): p. 10395-10400

    QR CODE