簡易檢索 / 詳目顯示

研究生: 林冠廷
GUAN-TING LIN
論文名稱: 積層製造之晶格結構設計與內置碳纖維板中底-生物力學前導研究
Additive manufacturing midsole with lattice structure design and midsole embedded with carbon-fiber: A pilot study for biomechanical parameters
指導教授: 許維君
Wei-Chun Hsu
口試委員: 陳建雄
Chien-Hsiung Chen
周子銓
Tzu-Chuan Chou
白孟宜
Meng-yi Bai
許維君
Wei-Chun Hsu
林儀佳
Yi-Jia Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 積層製造晶格結構碳纖維板跑鞋外在負荷生物力學
外文關鍵詞: Additive Manufacturing, Lattice struture, Carbon-fiber, running footwear, PlayerLoad, Biomechanics
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為製造技術的日新月異,積層製造與三維掃描機的發明有效地減少了開發成本與時間,因此而改變了加工法之既定印象。這兩項發明對於鞋款的製作、設計與應用之技術十分相關。同時也影響了運動鞋款的設計與提高運動表現與減少傷害之關聯性。本研究目的為在比較變因控制良好的鞋款且以不同元件進行設計之間的差異,並與市售鞋款進行比較,在穿著不同設計元素鞋款之生物力學參數差異;同時過去文獻沒有人去探討晶格結構鞋中底款與發泡鞋中底之間的差異性。本研究分為兩個部分,第一部分是針對鞋中底進行晶格結構設計製作晶格結構中底鞋款,第二部分為生物力學試驗並招募受試者隨機順序穿著五款鞋款,執行最大能力試驗、3000公尺試驗、敏捷性試驗、定速跑步機試驗、落地反向跳試驗,共五項試驗中分別有二到十位受試者接受測試。結果顯示在主觀問卷與控制組相比,穿著內置碳纖維板鞋款有顯著較高的彈性度。執行3000公尺試驗在與控制組相比,穿著內置碳纖維板鞋款完成時間上無顯著上的差異提升約十五秒,穿著內置碳纖維板鞋款在脛骨近端遠端之外在負荷前後方向有顯著較大的負荷量。執行落地反向跳試驗與控制組相比,穿著內置碳纖維板鞋款並對爆發力影響不具顯著性;在地面反作用力參數上有顯著較低的地面反作用力峰值,具有較好的前後、左右之穩定性。穿著內置碳板鞋款增加前後方向之外在負荷,未來研究需要增加受試者數量,並且建議以本研究所發現之變因生物力學效應為基出延伸進行觀察性以及介入性研究,對於是否增加膝關節受傷風險有所貢獻 。


    In recent years, due to the rapid development of manufacturing technology, the invention of laminate manufacturing and 3D scanners have effectively reduced development costs and timed. These two inventions are very relevant to the technology of designing and manufacturing shoes. In addition, it also affects the design of sports shoes and the correlation between improving sports performance and reducing injuries. Therefore, the purpose of this study was to compare the biomechanical parameters while wearing self-designed running footwear with and without carbon-fiber embeded in midsole. This study has two parts. The first part was to design and print lattice structure midsole. The second part was biomechanical testing which recruited 2 to 10 subjects to wear five footwears in random order. In this study, a total of five tests were performed, including the maximal aerobic power test, 3000 m trial test, pro-agility test, treadmill running test, drop jump test. The results in the visual analog scale of subjective rating for footwears showed that the footwear carbon-fiber embeded in midsole provided significantly higher perceived elasticity compared with the control. In the 3000 m trial test, compared with the control footwear, there was no significant difference in the completion time of wearing the footwear carbon-fiber embeded in midsole, and had significantly higher Player Load on the anterior-posterior of the proximal and distal tibia when wearing the footwear carbon-fiber embeded in midsole. In the drop jump test, compared with the control footwear, there has lower ground reaction force peaks when subjects wearing the footwear carbon-fiber embeded in midsole and has significantly better stability in anterior-posterior and medial/lateral directions. In concluditon, wearing the footwear carbon-fiber embeded in midsole can increased the Player Load in anterior-posterior of tibia. Future studies are required to increase the sample size in order to explore the biomechanical effects of the running footwear with self-designed 3D-printed midsole with lattice structure and midsole embedded with carbon-fiber.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章、 緒論 1 1.1 研究背景與動機 1 1.2 研究流程 2 第二章、 文獻回顧 3 2.1 鞋款各項變因 3 2.1.1 單變因-利用碳板改變縱向彎曲剛性 4 2.1.2 鞋中底材質與厚度 6 2.2 碳纖維鞋款文獻 7 2.3 積層製造之結構體 8 2.4 常見運動傷害與運動表現 10 2.5 研究目的 13 2.6 研究假設 13 第三章、 鞋中底晶格設計 14 3.1 數位模型繪製 14 3.1.1 曲面建模軟體 - Rhinoceros 3D 14 3.1.2 參數式設計軟體 - Grasshopper 14 3.2 晶格結構單元 15 3.2.1 晶格結構控制 15 3.2.2 晶格結構 15 3.2.3 晶格結構列印 16 3.2.4 晶格結構機械測試 16 3.2.5 鞋中底晶格 17 3.3 鞋中底晶格繪製 17 3.4 鞋款製作 18 第四章、 研究方法與實驗設計 20 4.1 研究參與者基本資料 20 4.2 試驗設備 21 4.2.1 動作捕捉系統(Motion Capture System) 21 4.2.2 心肺功能測試系統(Cardiopulmonary Exercise Testing, CPET) 22 4.2.3 加速度感測器 23 4.2.4 自製紅外線時間閘門 24 4.3 市售鞋款與自製鞋款 25 4.3.1 鞋款物性測試 25 4.4 試驗流程 28 4.5 試驗項目-運動表現 29 4.5.1 最大能力測驗 29 4.5.2 室外3000公尺試驗 30 4.5.3 敏捷性試驗(Pro-agility, 5-10-5 test) 31 4.6 試驗項目-運動學 32 4.6.1 定速跑步機試驗 34 4.6.2 著地反向跳(Drop jump, DJ) 34 4.7 試驗分期 35 4.7.1 定速跑步試驗 35 4.7.2 著地反向跳試驗 35 4.8 分析方法 36 4.8.1 最大能力測驗 36 4.8.2 室外3000公尺試驗 36 4.8.3 敏捷性試驗Pro-agility 36 4.8.4 動作捕捉系統分析 37 4.9 統計方法 38 第五章、 結果 39 5.1 視覺類比主觀舒適度量表(VAS) 40 5.2 室外3000公尺試驗 41 5.2.1 外在負荷參數 42 5.2.2 內外在負荷整合指標參數 45 5.3 敏捷性試驗(Pro-agility) 48 5.4 定速跑步機試驗 49 5.4.1 關節角度(Joint Angle) 49 5.4.2 關節角速度(Angular Velocity) 53 5.5 落地反向跳試驗 57 5.5.1 運動表現 57 5.5.2 地面反作用力參數 58 5.5.3 關節角度(Joint Angle) 62 5.5.4 關節角速度(Angular Velocity) 65 5.5.5 關節力矩(Joint Moment) 68 5.5.6 關節角動量(Joint Momentum) 71 5.5.7 關節功率(Joint Power) 74 5.5.8 關節功(Joint Work) 79 第六章、 討論 82 6.1 敏捷性試驗 83 6.2 定速跑步試驗 84 6.3 室外3000公尺 85 6.4 落地反向跳試驗 87 6.5 研究限制 88 第七章、 結論 89 參考網站 90 參考文獻 91 附錄一、主觀舒適度量表 97 附錄二、研究倫理委員會核可證 98

    Ajeet Kumar, Saurav Verma, & Jeng, J.-Y. (2020). Supportless Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling. 3d printing and additive manufacturing, 7(2), 85-96. doi:10.1089/3dp.2019.0089
    Al Rifaie, M., Mian, A., Katiyar, P., Majumdar, P., & Srinivasan, R. (2019). Drop-Weight Impact Behavior of Three-Dimensional Printed Polymer Lattice Structures with Spatially Distributed Vertical Struts. Journal of Dynamic Behavior of Materials, 5(4), 387-395. doi:10.1007/s40870-019-00199-7
    Barnes, K. R., & Kilding, A. E. (2019). A Randomized Crossover Study Investigating the Running Economy of Highly-Trained Male and Female Distance Runners in Marathon Racing Shoes versus Track Spikes. Sports Medicine, 49(2), 331-342. doi:10.1007/s40279-018-1012-3
    Beck, O. N., Golyski, P. R., & Sawicki, G. S. (2020). Adding carbon fiber to shoe soles may not improve running economy: a muscle-level explanation. Scientific Reports, 10(1), 17154. doi:10.1038/s41598-020-74097-7
    Blackmore, T., Willy, R. W., & Creaby, M. W. (2016). The high frequency component of the vertical ground reaction force is a valid surrogate measure of the impact peak. J Biomech, 49(3), 479-483. doi:10.1016/j.jbiomech.2015.12.019
    Bosco, C., Luhtanen, P., & Komi, P. V. (2004). A simple method for measurement of mechanical power in jumping. European Journal of Applied Physiology and Occupational Physiology, 50, 273-282.
    Bowen, L., Gross, A. S., Gimpel, M., & Li, F. X. (2017). Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med, 51(5), 452-459. doi:10.1136/bjsports-2015-095820
    Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform, 6(3), 311-321. doi:10.1123/ijspp.6.3.311
    Bugin, L., Machado Fagundes, C., Bruscato, U., & Cândido, L. (2020). Exploration of data-driven midsole algorithm design based in biomechanics data and Voronoi 3D to digital manufacturing. Design e Tecnologia, 10, 01-10. doi:10.23972/det2020iss21pp01-10
    Burns, G. T., & Tam, N. (2019). Is it the shoes? A simple proposal for regulating footwear in road running. British Journal of Sports Medicine, 54(8), 439-440. doi:10.1136/bjsports-2018-100480
    Chen, W. H., Chiang, C. W., Fiolo, N. J., Fuchs, P. X., & Shiang, T. Y. (2022). Ideal Combinations of Acceleration-Based Intensity Metrics and Sensor Positions to Monitor Exercise Intensity under Different Types of Sports. Sensors, 22(7). doi:10.3390/s22072583
    Cheung, R. T. H., & Davis, I. S. (2011). Landing pattern modification to improve patellofemoral pain in runners: A case series. Journal of Orthopaedic and Sports Physical Therapy, 41(12), 914-919. doi:10.2519/jospt.2011.3771
    Chiu, H.-T., & Shiang, T.-Y. (2007). Effects of Insoles and Additional Shock Absorption Foam on the Cushioning Properties of Sport Shoes. Journal of Applied Biomechanics, 23, 119-127. doi:10.1123/jab.23.2.119
    Čigoja, S., Asmussen, M., Firminger, C., Fletcher, J., Edwards, W. B., & Nigg, B. (2020). The Effects of Increased Midsole Bending Stiffness of Sport Shoes on Muscle-Tendon Unit Shortening and Shortening Velocity: a Randomised Crossover Trial in Recreational Male Runners. Sports Medicine - Open, 6. doi:10.1186/s40798-020-0241-9
    Cigoja, S., Firminger, C. R., Asmussen, M. J., Fletcher, J. R., Edwards, W. B., & Nigg, B. M. (2019). Does increased midsole bending stiffness of sport shoes redistribute lower limb joint work during running? Journal of Science and Medicine in Sport, 22(11), 1272-1277. doi:https://doi.org/10.1016/j.jsams.2019.06.015
    Cigoja, S., Fletcher, J. R., & Nigg, B. M. (2021). Can changes in midsole bending stiffness of shoes affect the onset of joint work redistribution during a prolonged run? Journal of Sport and Health Science. doi:https://doi.org/10.1016/j.jshs.2020.12.007
    Clermont, C., Barrons, Z. B., Esposito, M., Dominguez, E., Culo, M., Wannop, J. W., & Stefanyshyn, D. (2022). The influence of midsole shear on running economy and smoothness with a 3D-printed midsole. Sports biomechanics, 1-12. doi:10.1080/14763141.2022.2029936
    Clermont, C. A., Barrons, Z. B., Esposito, M., Culo, M., Dominguez, E., Wannop, J. W., & Stefanyshyn, D. (2021). The influence of midsole shear on running smoothness. Footwear Science, 13(sup1), S13-S14. doi:10.1080/19424280.2021.1916612
    Cui, Q., & Yue, F. (2020). Parametric Design of Personalized 3D Printed Sneakers, Singapore.
    Davis, I. S., Bowser, B. J., & Mullineaux, D. R. (2016). Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. Br J Sports Med, 50(14), 887-892. doi:10.1136/bjsports-2015-094579
    Day, E., & Hahn, M. (2019). Optimal footwear longitudinal bending stiffness to improve running economy is speed dependent. Footwear Science, 12(1), 3-13. doi:10.1080/19424280.2019.1696897
    Dong, G., Tessier, D., & Zhao, Y. F. (2019). Design of Shoe Soles Using Lattice Structures Fabricated by Additive Manufacturing. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 719-728. doi:10.1017/dsi.2019.76
    Farley, C. T., & McMahon, T. A. (1992). Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol (1985), 73(6), 2709-2712. doi:10.1152/jappl.1992.73.6.2709
    Firminger, C., Cigoja, S., Asmussen, M. J., Fletcher, J. R., Nigg, B., & Edwards, B. (2019). Effect of longitudinal bending stiffness and running speed on a probabilistic achilles tendinopathy model. Footwear Science, 11(sup1), S66-S68. doi:10.1080/19424280.2019.1606081
    Flores, N., Delattre, N., Berton, E., & Rao, G. (2019). Does an increase in energy return and/or longitudinal bending stiffness shoe features reduce the energetic cost of running? Eur J Appl Physiol, 119(2), 429-439. doi:10.1007/s00421-018-4038-1
    Flores, N., Rao, G., Berton, E., & Delattre, N. (2019). The stiff plate location into the shoe influences the running biomechanics. Sports biomechanics, 20(7), 815-830. doi:10.1080/14763141.2019.1607541
    Fox, J. L., Stanton, R., & Scanlan, A. T. (2018). A Comparison of Training and Competition Demands in Semiprofessional Male Basketball Players. Res Q Exerc Sport, 89(1), 103-111. doi:10.1080/02701367.2017.1410693
    Franz, J. R., Wierzbinski, C. M., & Kram, R. (2012). Metabolic Cost of Running Barefoot versus Shod: Is Lighter Better? Med Sci Sports Exerc, 44(8), 1519-1525. doi:10.1249/MSS.0b013e3182514a88
    Frederick, E. C. (2019). No evidence of a performance advantage attributable to midsole thickness. Footwear Science, 12(1), 1-2. doi:10.1080/19424280.2019.1690327
    Frederick EC, C. T., Larsen JL, Cooper LB. (1984). The effect of shoe cushioning on the oxygen demands on running. Biomechanical Aspects of Sports Shoes and Playing Surfaces., 107–114.
    Gregory, R., Axtell, R., Robertson, M., & Lunn, W. (2018). The Effects of a Carbon Fiber Shoe Insole on Athletic Performance in Collegiate Athletes. Journal of Sports Science, 6. doi:10.17265/2332-7839/2018.04.001
    Healey, L. A., & Hoogkamer, W. (2021). Longitudinal bending stiffness does not affect running economy in Nike Vaporfly Shoes. Journal of Sport and Health Science. doi:https://doi.org/10.1016/j.jshs.2021.07.002
    Hébert-Losier, K., Finlayson, S. J., Driller, M. W., Dubois, B., Esculier, J.-F., & Beaven, C. M. (2020). Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. Journal of Sport and Health Science. doi:https://doi.org/10.1016/j.jshs.2020.11.012
    Helou, M., & Kara, S. (2018). Design, analysis and manufacturing of lattice structures: an overview. International Journal of Computer Integrated Manufacturing, 31(3), 243-261. doi:10.1080/0951192X.2017.1407456
    Helou, M., Vongbunyong, S., & Kara, S. (2016). Finite Element Analysis and Validation of Cellular Structures. Procedia CIRP, 50, 94-99. doi:https://doi.org/10.1016/j.procir.2016.05.018
    Hoogkamer, W., Kipp, S., Frank, J. H., Farina, E. M., Luo, G., & Kram, R. (2018). A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Medicine, 48(4), 1009-1019. doi:10.1007/s40279-017-0811-2
    Hoogkamer, W., Kipp, S., & Kram, R. (2019). The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study. Sports Medicine, 49(1), 133-143. doi:10.1007/s40279-018-1024-z
    Hoogkamer, W., Kipp, S., Spiering, B. A., & Kram, R. (2016). Altered Running Economy Directly Translates to Altered Distance-Running Performance. Med Sci Sports Exerc, 48(11), 2175-2180. doi:10.1249/mss.0000000000001012
    Hoogkamer, W., Kram, R., & Arellano, C. J. (2017). How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Medicine, 47(9), 1739-1750. doi:10.1007/s40279-017-0708-0
    Huang, Y., Xia, H., Chen, G., Cheng, S., Cheung, R. T. H., & Shull, P. B. (2019). Foot strike pattern, step rate, and trunk posture combined gait modifications to reduce impact loading during running. J Biomech, 86, 102-109. doi:10.1016/j.jbiomech.2019.01.058
    Hulteen, R. M., Smith, J. J., Morgan, P. J., Barnett, L. M., Hallal, P. C., Colyvas, K., & Lubans, D. R. (2017). Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Preventive Medicine, 95, 14-25. doi:https://doi.org/10.1016/j.ypmed.2016.11.027
    Hunter, I. (2003). A new approach to modeling vertical stiffness in heel-toe distance runners. Journal of Sports Science and Medicine, 2(4), 139-143. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963246/pdf/jssm-02-139.pdf
    Hunter, I., McLeod, A., Valentine, D., Low, T., Ward, J., & Hager, R. (2019). Running economy, mechanics, and marathon racing shoes. Journal of Sports Science, 37(20), 2367-2373. doi:10.1080/02640414.2019.1633837
    Jhou, S.-Y., Hsu, C.-C., & Yeh, J.-C. (2021). The Dynamic Impact Response of 3D-Printed Polymeric Sandwich Structures with Lattice Cores: Numerical and Experimental Investigation. Polymers, 13(22). doi:10.3390/polym13224032
    Jones, A. M., & Doust, J. H. (1996). A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci, 14(4), 321-327. doi:10.1080/02640419608727717
    Joubert, D. P. a. J., Garrett P. (2021). A Comparison of Running Economy Across Seven Carbon-Plated Racing Shoes. Faculty Publications., 33. Retrieved from https://scholarworks.sfasu.edu/kinesiology/33
    Kumar, B. (2019). Axis Specific Player Load to Quantify Lower Limb Biomechanical Loading in Adolescent Badminton Players. International Journal of Racket Sports Science. doi:10.30827/Digibug.57329
    Lopes, A. D., Hespanhol, L. C., Yeung, S. S., & Costa, L. O. P. (2012). What are the Main Running-Related Musculoskeletal Injuries? Sports Medicine, 42(10), 891-905. doi:10.1007/BF03262301
    Madden, R., Sakaguchi, M., Tomaras, E. K., Wannop, J. W., & Stefanyshyn, D. (2016). Forefoot bending stiffness, running economy and kinematics during overground running. Footwear Science, 8(2), 91-98. doi:10.1080/19424280.2015.1130754
    McLeod, A., Bruening, D., Johnson, A., Ward, J., & Hunter, I. (2020). Improving running economy through altered shoe bending stiffness across speeds. Footwear Science, 12, 1-11. doi:10.1080/19424280.2020.1734870
    McLeod, A. R., Bruening, D., Johnson, A. W., Ward, J., & Hunter, I. (2020). Improving running economy through altered shoe bending stiffness across speeds. Footwear Science, 12(2), 79-89. doi:10.1080/19424280.2020.1734870
    McMahon, T. A., & Cheng, G. C. (1990). The mechanics of running: How does stiffness couple with speed? J Biomech, 23(SUPPL. 1), 65-78. doi:10.1016/0021-9290(90)90042-2
    Milner, C. E., Ferber, R., Pollard, C. D., Hamill, J., & Davis, I. S. (2006). Biomechanical factors associated with tibial stress fracture in female runners. Medicine and Science in Sports and Exercise, 38(2), 323-328. doi:10.1249/01.mss.0000183477.75808.92
    Milner, C. E., Hamill, J., & Davis, I. (2007). Are knee mechanics during early stance related to tibial stress fracture in runners? Clinical Biomechanics, 22(6), 697-703. doi:10.1016/j.clinbiomech.2007.03.003
    Mündermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait Posture, 16(1), 38-45. doi:https://doi.org/10.1016/S0966-6362(01)00197-7
    Nigg, B. M., Cigoja, S., & Nigg, S. R. (2020). Effects of running shoe construction on performance in long distance running. Footwear Science, 12(3), 133-138. doi:10.1080/19424280.2020.1778799
    Oh, K., & Park, S. (2017). The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. J Biomech, 53, 127-135. doi:https://doi.org/10.1016/j.jbiomech.2017.01.014
    Pohl, M. B., Hamill, J., & Davis, I. S. (2009). Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clinical Journal of Sport Medicine, 19(5), 372-376. doi:10.1097/JSM.0b013e3181b8c270
    Rojas-Valverde, D., Sánchez-Ureña, B., Pino-Ortega, J., Gómez-Carmona, C., Gutiérrez-Vargas, R., Timón, R., & Olcina, G. (2019). External Workload Indicators of Muscle and Kidney Mechanical Injury in Endurance Trail Running. International Journal of Environmental Research and Public Health, 16(20). doi:10.3390/ijerph16203909
    Roy, J. P., & Stefanyshyn, D. J. (2006). Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med Sci Sports Exerc, 38(3), 562-569. doi:10.1249/01.mss.0000193562.22001.e8
    Senefeld, J. W., Haischer, M. H., Jones, A. M., Wiggins, C. C., Beilfuss, R., Joyner, M. J., & Hunter, S. K. (2021). Technological advances in elite marathon performance. Journal of Applied Physiology, 130(6), 2002-2008. doi:10.1152/japplphysiol.00002.2021
    Shimoyama, K., Seo, K., Nishiwaki, T., Jeong, S., & Obayashi, S. (2011). Design optimization of a sport shoe sole structure by evolutionary computation and finite element method analysis. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 225(4), 179-188. doi:10.1177/1754337111414485
    Sinclair, J., McGrath, R., Brook, O., Taylor, P. J., & Dillon, S. (2016a). Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe. J Sports Sci, 34(11), 1094-1098. doi:10.1080/02640414.2015.1088961
    Sinclair, J., McGrath, R., Brook, O., Taylor, P. J., & Dillon, S. (2016b). Influence of footwear designed to boost energy return on running economy in comparison to a conventional running shoe. J Sports Sci, 34(11), 1094-1098. doi:10.1080/02640414.2015.1088961
    Sissler, L., & Giandolini, M. (2019). Finite element modelling of tibial vibrations during running. Footwear Science, 11(sup1), S75-S77. doi:10.1080/19424280.2019.1606086
    Smith, G., Lake, M., Sterzing, T., & Milani, T. (2016). The influence of sprint spike bending stiffness on sprinting performance and metatarsophalangeal joint function. Footwear Science, 8, 109-118. doi:10.1080/19424280.2016.1143038
    Stefanyshyn, D., & Fusco, C. (2004). Increased shoe bending stiffness increases sprint performance. Sports biomechanics, 3(1), 55-66. doi:10.1080/14763140408522830
    Stefanyshyn, D. J., & Nigg, B. M. (2000). Influence of midsole bending stiffness on joint energy and jump height performance. Medicine & Science in Sports & Exercise, 32(2). Retrieved from https://journals.lww.com/acsm-msse/Fulltext/2000/02000/Influence_of_midsole_bending_stiffness_on_joint.32.aspx
    Sun, X., Lam, W.-K., Zhang, X., Wang, J., & Fu, W. (2020). Systematic Review of the Role of Footwear Constructions in Running Biomechanics: Implications for Running-Related Injury and Performance. Journal of sports science & medicine, 19(1), 20-37. Retrieved from https://pubmed.ncbi.nlm.nih.gov/32132824
    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039038/
    Takahashi, K. Z., Gross, M. T., van Werkhoven, H., Piazza, S. J., & Sawicki, G. S. (2016). Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking. Scientific Reports, 6(1), 29870. doi:10.1038/srep29870
    Tancogne-Dejean, T., Spierings, A. B., & Mohr, D. (2016). Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 116, 14-28. doi:https://doi.org/10.1016/j.actamat.2016.05.054
    Tessier, D., & Yaoyao Fiona, Z. (2019). Design of Shoe Soles Using Lattice Structures Fabricated by Additive Manufacturing. In (Vol. 1, pp. 719-728). Cambridge: Cambridge University Press.
    Teunissen, L. P. J., Grabowski, A., & Kram, R. (2007). Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 210(24), 4418-4427. doi:10.1242/jeb.004481
    Theisen, D., Malisoux, L., Genin, J., Delattre, N., Seil, R., & Urhausen, A. (2013). Influence of midsole hardness of standard cushioned shoes on running-related injury risk. British Journal of Sports Medicine, 48. doi:10.1136/bjsports-2013-092613
    Tumbleston John, R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson Ashley, R., Kelly, D., . . . DeSimone Joseph, M. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349-1352. doi:10.1126/science.aaa2397
    Tung, K. D., Franz, J. R., & Kram, R. (2014). A test of the metabolic cost of cushioning hypothesis during unshod and shod running. Med Sci Sports Exerc, 46(2), 324-329. doi:10.1249/MSS.0b013e3182a63b81
    Van Der Worp, H., Vrielink, J. W., & Bredeweg, S. W. (2016). Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis. British Journal of Sports Medicine, 50(8), 450-457. doi:10.1136/bjsports-2015-094924
    van Gent, R. N., Siem, D., van Middelkoop, M., van Os, A. G., Bierma-Zeinstra, S. M., & Koes, B. W. (2007). Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med, 41(8), 469-480; discussion 480. doi:10.1136/bjsm.2006.033548
    Wang, C., Liu, X., Yue, Y., Huang, J., Huang, X., & Liu, B. (2021). Study on Vibration Damping Mechanism of Shoe Sole with Alternating Lattice Structure Using Vibration Level Difference. Mathematical Problems in Engineering, 2021, 6647573. doi:10.1155/2021/6647573
    Wannop, J. W., Schrier, N., Worobets, J., & Stefanyshyn, D. (2020). Influence of forefoot bending stiffness on American football performance and metatarsophalangeal joint bending angle. Sports biomechanics, 1-11. doi:10.1080/14763141.2020.1750682
    Weeger, O., Boddeti, N., Yeung, S. K., Kaijima, S., & Dunn, M. L. (2019). Digital design and nonlinear simulation for additive manufacturing of soft lattice structures. Additive Manufacturing, 25, 39-49. doi:https://doi.org/10.1016/j.addma.2018.11.003
    Weiss, M., Newman, A., Whitmore, C., & Weiss, S. (2016). One hundred and fifty years of sprint and distance running - Past trends and future prospects. Eur J Sport Sci, 16(4), 393-401. doi:10.1080/17461391.2015.1042526
    Willwacher, S., König, M., Braunstein, B., Goldmann, J.-P., & Brüggemann, G.-P. (2014). The gearing function of running shoe longitudinal bending stiffness. Gait Posture, 40(3), 386-390. doi:https://doi.org/10.1016/j.gaitpost.2014.05.005
    Willwacher, S., König, M., Potthast, W., & Brüggemann, G. P. (2013). Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? J Appl Biomech, 29(5), 583-592. doi:10.1123/jab.29.5.583
    Worobets, J., Wannop, J. W., Tomaras, E., & Stefanyshyn, D. (2014). Softer and more resilient running shoe cushioning properties enhance running economy. Footwear Science, 6(3), 147-153. doi:10.1080/19424280.2014.918184
    Zadpoor, A. A., & Nikooyan, A. A. (2011). The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clinical Biomechanics, 26(1), 23-28. doi:10.1016/j.clinbiomech.2010.08.005
    Zech, A., Argubi-Wollesen, A., & Rahlf, A.-L. J. E. j. o. s. s. (2015). Minimalist, standard and no footwear on static and dynamic postural stability following jump landing. 15(4), 279-285.
    Zhao, M., Liu, F., Fu, G., Zhang, D. Z., Zhang, T., & Zhou, H. (2018). Improved Mechanical Properties and Energy Absorption of BCC Lattice Structures with Triply Periodic Minimal Surfaces Fabricated by SLM. Materials (Basel), 11(12). doi:10.3390/ma11122411
    王鈞逸, & 鄭景峰. (2010). 運動訓練量的監控:訓練衝量. 中華體育季刊, 24(1), 138-147. doi:10.6223/qcpe.2401.201003.2015

    無法下載圖示 全文公開日期 2027/05/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE