簡易檢索 / 詳目顯示

研究生: 梁立杰
Richard - Liando
論文名稱: 細胞對新式奈米金粒子攝入與反應
Cellular uptake and responses of biosynthesis gold nanoparticles
指導教授: 何明樺
Ming-Hua Ho
口試委員: 戴龑
Yian Tai
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 163
中文關鍵詞: 奈米金粒子生物合成細胞攝入細胞活性細胞增生
外文關鍵詞: gold nanoparticles, biosynthesis, cell, uptake, activity, proliferation
相關次數: 點閱:359下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用水果萃取物合成不同型態的奈米金粒子(Gold nanoparticles),優點為不需使用任何有機溶劑,可以避免因有機溶劑產生的細胞毒性。奈米金粒子使用穿透式電子顯微鏡(TEM)、動態散射光譜儀(DLS)、界達電位儀(Zeta potential)及紫外光-可見光光譜儀(UV-VIS Spectrophotometer)鑑定其性質。奈米金粒子分為兩種型態,球型及三角型。球型奈米金粒子平均尺寸為102.1 nm,為三角形奈米金粒子的兩倍。球型奈米金粒子的表面負電荷低於三角形奈米金粒子。而低濃度與帶有較低負電荷的奈米金粒子,有助於提升細胞攝入量。因此細胞內球型奈米金粒子高於三角形。對類骨細胞及骨母細胞而言,隨著細胞內奈米金粒子數量增加而活性上升。
對骨類細胞而言,攝入奈米金粒子可增進細胞的活性,而表面電荷及濃度會影響細胞對奈米金粒子的攝入。藉由實驗結果發現,奈米金粒子於生醫材料上有高度的發展潛力。


In this research, gold nanoparticles (GNPs) with different morphologies were synthesized by using fruit extract without any organic solvents. Their properties were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, and ultraviolet spectrophotometer (UV-vis). The TEM results indicated there were two different shapes of GNPs spherical and triangle GNPs. Spherical GNPs had average size of 102.1 nm, twice larger than triangle. They also had less negative surface charge and less absorption uv-vis peak compared to triangle ones. Rat osteosarcoma cells (UMR) and rat osteoblasts (7F2) were cultured with GNPs. Their cellular uptake and cell’s behavior were then further analyzed. Higher GNPs cellular uptake was obtained when GNPs were less negative and with low concentration for both of UMR and 7F2 cells. Therefore, the intracellular amounts of spherical GNPs were higher, compared to triangle ones. Furthermore, the activity of UMR and 7F2 cells was increased with intracellular amount of GNPs, no matter spherical or triangle ones. In conclusions, the present research revealed that GNPs cellular uptake was influenced by their surface charge and concentration. Moreover, the uptake of GNPs was able to promote cellular activity of osteoblastic cell. The results in this study supported that biosynthesis GNPs are highly potential in biomedical applications.

Acknowledgment i Abstract (in Chinese) ii Abstract (in English) iii Contents iii Figure List vii Table List xi Chapter 1. Introduction 1 Chapter 2. Literatures Review 1 2.1. Nanoparticles 1 2.1.1. Nanoparticles introduction 1 2.1.2. Nanoparticle applications 2 2.1.2. Nanoparticle features 4 2.2. Gold nanoparticle 4 2.2.1. Gold nanoparticle properties 4 2.2.2. Gold nanoparticle synthesis 5 2.2.2. Gold nanoparticle limitation 9 2.3. Raman 11 2.3.1. Raman definition 11 2.3.2. Surface-enhanced Raman spectroscopy (SERS) 12 2.3.3. SERS substrate and benefit 12 2.3.4. Relation between gold nanoparticles and Raman 13 2.3.4.1. The optical properties of noble metals 13 2.3.4.2. Application of gold nanoparticles in life science 14 Chapter 3. Material and Experimental Procedure 27 3.1. Chemicals and materials 27 3.2. Experimental apparatus 28 3.3. Gold nanoparticle 30 3.3.1. Gold nanoparticle synthesis 30 3.4. Cells 32 3.4.1. Cells type 32 3.4.2. Cell culture 34 3.4.3. Cell counting 35 3.5. Experimental design 37 3.6. Cell attachment and spreading area 37 3.7. Cell number staining assay for cell proliferation 38 3.8. MTT assay for mitochondria activity 38 3.9. Alkaline phosphatase (ALPase) quantification assay for ALPase expression 39 3.10. TEM sample preparation 40 3.11. Raman sample preparation 42 3.12. Raman spectroscopy 42 3.13. Zeta Potential analysis 43 3.14. Preparation of medium 43 3.15. Cell freezing 43 3.16. Cell de-freezing 44 Chapter 4. Results and Discussions 45 4.1. Gold nanoparticles shapes and properties 45 4.1.1. Characterization of gold nanoparticles 45 4.1.2. Gold nanoparticles pre-treatment 48 4.1.3. Gold nanoparticles sterilization 50 4.1.4. Gold nanoparticle surface charge 53 4.2. Transmission electron microscopy (TEM) 55 4.3. Cell behaviors with addition of gold nanoparticles 64 4.3.1. Cell attachment 64 4.3.2. Cell spreading area and elongation 67 4.3.3. Cell proliferation 73 4.3.3.1. UMR cell proliferation 73 4.3.3.2. 7F2 cell proliferation 78 4.3.4. Cell activity 81 4.3.4.1. UMR cell activity 81 4.3.4.2. 7F2 cell activity 85 4.3.5. ALPase expression 88 4.3.5.1. UMR cell ALPase expression 88 4.3.6. Cell behaviors influenced by gold nanoparticles 94 4.4. Surface-enhanced Raman signal (SERS) analysis 99 Chapter 5. Conclusions 102 5.1. Conclusions 102 References 105 Appendix 117

1. Chithrani, B.D., Ghazani, A.A., Chan, W.C.W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006. 6(4): p. 662-668.
2. Yen, H.J., Hsu S.H., Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009. 5: p. 1553-1561.
3. Arnida, M.M.J.-A., A. Ray, C.M. Peterson, H. Ghandehari, Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. European Journal of Pharmaceutics and Biopharmaceutics, 2011. 77: p. 417-423.
4. F.E. Alemdaroglu, N.C.A., P. Langguth, A. Herrmann, Cellular uptake of DNA block copolymer micelles with different shapes. Macromolecular journals, 2009. 29(4): p. 326-329.
5. Parab H.J., C.H.M., Lai T.C., Huang J.H., Chen P.H., Liu R.S., Hsiao M., Chen C.H., Tsai D.P., Hwu Y.K., Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. Journal of Physical Chemistry C, 2009. 113: p. 7574-7578.
6. T.K. Sau, C.J.M., Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir, 2004. 20: p. 6414-6420.
7. B. Nikoobakht, M.A.E.-S., Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Matter, 2003. 15: p. 1957-1962.
8. O.M. Bakr, B.H.W., F.Stellacci, High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem. Matter, 2006. 18: p. 3297-3301.
9. J.E. Millstone, G.S.M., C.A. Mirkin, Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv. Func. Matter, 2006. 16: p. 1209-1214.
10. Z.R. Shen, K.M., M. Higashimoto, T. Shimoda, M. Miyake, ingle-crystalline gold nanodisks prepared by the shape transformation under UV irradiation from nanoparticles protected with discotic liquid crystalline ligands Chem. Letter, 2008. 37(1276-1277).
11. C.G. Khoury, T.V.-D., Gold nanostars for surface-enhanced raman scattering: synthesis, characterization and optimization. Journal of Physical Chemistry C, 2008. 112: p. 11849-11859.
12. P.S. Kumar, I.P.-S., B. Rodriguez-Gonzalez, F.J. Garcia de Abajo, L.M. Liz-Marzan, High-yield synthesis and optical response of gold nanostars. Nanotechnology, 2008. 19(015606).
13. Tai Y., T.N.T.T., Tsai Y.C., Fang J.Y., Chang L.W., One-Step Synthesis of Highly Biocompatible Multi-Shaped Gold Nanostructures with Fruit Extract. IET Nanobiotechnol., 2011. 5: p. 52-59.
14. Eliza H., S.B., Simon L., Melanie L.H., Jasna K., Francoise M.W., Dusica M., Microglial Response to Gold Nanoparticles. ACS Nano, 2010. 4: p. 2595-2606.
15. International, A., Terminology for Nanotechnology, 2006.
16. Christian P., V.d.K.F., Baalousha M, Hofmann T., Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008. 17: p. 326-343.
17. Nel A., X.T., Madler L., Li N., Toxic potential of materials at the nanolevel. Science, 2006. 311: p. 622-627.
18. Alberts B., J.A., Lewis J., Raff M., Roberts K. Walter P., Molecular Biology of The Cell. 5th ed2008, New York, USA: Garland Science.
19. Schmidbaur H., C.S., Djordjevic B., Schuster O., Understanding gold chemistry through relativity. Chemical Physics 2005. 311: p. 151-161.
20. Parab H.J., C.H.M., Bagkar N.C., Liu R.S., Hwu Y.K., Tsai D.P., Approaches to the Synthesis and Characterization of Spherical and Anisotropic Noble Metal Nanomaterials. Nanomaterials for the Life Science, ed. C. Kumar2009: Wiley-VCH.
21. Gardea-Torresdey J.L., P.J.G., Gomez E., Peralta-Videa J., Troian i H.E., Santiag P., Yacaman M.J., Formation and growth of au nanoparticles inside live alfalfa plants. Nano Letters, 2002. 2: p. 397-401.
22. Jorge L., T.G., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H. and Yacaman M.J. , Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 2003. 19: p. 1357-1361.
23. Shankar S., A.A., Pasricha R., Sastry, M., Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 2003. 13: p. 1822-1826.
24. Shankar S.S., R., A., Ahmad, A. and Sastry, M., Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004. 275: p. 496-502.
25. Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago, P. and Gardea-Torresdey, J.L., Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research, 2004. 6: p. 377-382.
26. Shankar S.S., R.A., Ankamwar B., Singh A., Ahmad,A., Sastry M., Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004. 3: p. 482-488.
27. Chandran, S.P., Chaudhary, M., Pasricha, R., Ahmad, A. and Sastry, M., Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress, 2006. 22: p. 577-583.
28. Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea – Torresdey, J.L. and Pal, T., Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environmental Science and Technology, 2007. 41: p. 5173-5142.
29. Huang J., L.Q., Sun D., Lu Y., Su Y., Yang X., Wang H., Wang Y., Shao W., He N., Hong J., Chen C., Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 2007. 18: p. 1-11.
30. Xie J., L.J.Y., Wang D.I.C., Ting Y.P., Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 2007. 3: p. 672-682.
31. Singaravelu, G.G., Arockiamary, J.S., Kumar, V.G. and Govindaraju, K., A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii. Colloids and Surfaces. B. Biointerfaces, 2007. 57: p. 97-101.
32. Lin J., Z.H., Chen Z., Zheng Y., Penetration of Lipid Membranes by Gold Nanoparticles: Insights into Cellular Uptake, Cytotoxicity, and Their Relationship. ACS Nano, 2010. 4: p. 5421-5429.
33. Cho E.C., X.J., Wurm P.A., Xia Y., Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell Surface with a I2/KI etchant. Nano Letters, 2009. 9: p. 1080-1084.
34. Leroueil P.R., H.S., Mecke A., Baker J.R, Jr., Orr B.G., Holl M.M.B., Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Acc. Chem. Res., 2007. 40: p. 335.
35. Lu S., X.D., Huang G., Jing H.M., Wang Y., Gu H., Concentration Effect of Gold Nanoparticles on Proliferation of Keranocytes. Elsevier, 2010. 81: p. 406-411.
36. Gil P.R., O.G., Elder A., Puntes V., Parak W.J., Correlating Physico-Chemical with Toxicological Properties of Nanoparticles: The Present and the Future. ACS Nano, 2010. 4(10): p. 5527-5531.
37. Pan Y., N.S., Leifert A., Fischler M., Wen F., Simon U., Schmid G., Brandau W., Jahnen-Dechent W., Size-Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007. 3: p. 1941-1949.
38. Tsoli M., K.H., Brandau W., Esche H., Schmid G., Cellular Uptake and Toxicity of Au55 Clusters. Small, 2005. 1: p. 841-844.
39. Chithrani B.D., C.W.C., Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 2007. 7: p. 1542-1550.
40. Jiang W., K.B.W., Rutka J.T., Chan W.C., Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol., 2008. 3: p. 145-150.
41. Jin H., H.D.A., Sharma R., Strano M.S., Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. ACS Nano, 2009. 3: p. 149-158.
42. Barlett D.W., D.M.E., Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjugate Chemistry, 2007. 18: p. 456-468.
43. Wei, A., Kim, B., Sadtler, B., Tripp, S.L., Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays. Chemical Physics Chemistry, 2001. 2(12): p. 743-745.
44. Kneipp, K., Kneipp, H, Kneipp, J., Surface-enhanced raman scattering in local optical fields of silver and gold nanoaggregates - From single-molecule raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res., 2006. 39(7): p. 443-450.
45. C.M. Goodman, C.D.M., T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 2004. 15(4): p. 897-900.
46. N. Uzunbajakava, A.L., Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophysical Journal, 2003. 84: p. 3968-3981.
47. C. Matthaus, S.B.-W., M. Miljkovi, M. Romeo, M. Diem, Raman and infrared microspectral imaging of mitotic cells. Appl Spectrosc, 2006. 60: p. 1-8.
48. Brabander M.D., N.R., Geuens G., Moremeans M., Mey J.D., The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motility and the Cytoskeleton, 1986. 6: p. 105-113.
49. Durr N.J., L.T., Smith D.K., Korgel B.A., Sokolov K., Ben-Yakar A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Letters, 2007. 7: p. 941-945.
50. Oyelere A., C.P.C., Huang X., El-Sayed I.H., El-Sayed M.A., Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chemistry, 2007. 18: p. 1490-1497.
51. Loo C., L.A., Halas N.J., West J., Drezek R., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Letters, 2006. 5: p. 709-711.
52. El-Sayed I.H., H.X., El-Sayed M.A., Gold nanocages: biocoonjugation and their potential use as optical imaging contrast agents. Nano Letters, 2005. 5: p. 473-477.
53. Kim D., P.S., Lee J.H., Jeong Y.Y., Jon S., Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. Journal of American Chemical Society, 2007. 129: p. 7661-7665.
54. Huang X., E.-S.I.H., Qian W., El-Sayed M.A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of American Chemical Society, 2006. 128: p. 2115-2120.
55. Chen S., W.Z.L., Ballato J., Foulger S.H., Carroll D.L. , Monopod, bipod, tripod, and tetrapod gold nanocrystals. Journal of American Chemical Society, 2003. 125: p. 16186-16187.
56. Chen J., W.D., Xi J., Au L., Siekkinen A., Warson A., Li Z.-Y., Zhang H., Xia Y., Li X., Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 2007. 7: p. 1318-1322.
57. Hanahan D., W.R.A., Hallmarks of Cancer: The Next Generation. Cell, 2011. 144: p. 646-674.
58. Stein G.S., L.J.B., Wijnen A.J., Stein J.L., Montecino M., Javed A., Zaidi S.K., Young D.W., Choi J.Y., Pockwinse S.M., Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene, 2004. 23: p. 4315-4329.
59. Reinholt F.P., H.K., Oldberg A., Heinegard D., Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA, 1990. 87(12): p. 4473-4475.
60. Chen, H.M., Liu, R.S., Tsai D.P., A Versatile Route to the Controlled Synthesis of Gold Nanostructures. Crystal Growth and Design, 2009. 9: p. 2079-2087.
61. J. Sun, D.M., N. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfander, D. Su, Toward monodispersed silver nanoparticles with unusual thermal stability. Journal of American Chemical Society, 2006. 128(39): p. 15756-15764.
62. Thaddeus J.N. Jr., C.D.G., Donny M., Jin Z.Z., Near Infrared Optical Absorption of Gold Nanoparticle Aggregates. Journal of Physical Chemistry B, 2006. 106(28): p. 7005-7012.
63. Luis M., L.M., Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 2006. 22(1): p. 32-41.
64. Gyoung H.J., Y.W.L., Minjung K., Sang W.H., High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Rama scattering properties. Journal of Colloid and Interface Science, 2009. 329: p. 97-102.
65. T. Shimizu, T.T., S. Hasegawa, M. Miyake, Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. Journal of Physical Chemistry B, 2003. 107: p. 2719=2724.
66. Owen, T., Fundamentals of Modern UV-Visible Spectroscopy1996: Hewlett-Packard.
67. Angela F., B.P., Maria M., Christian S.E., Andrea H., Cristina F.L., Valeria G., Jesus M.F., Isabel P.S., Luis M.,L., Africa G., Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. small, 2010. 6(1): p. 89-95.
68. Sweeney S., W.G., Hutchison J., Rapid purification and size separation of gold nanoparticles via diafiltration. Journal of American Chemical Society, 2006. 128: p. 3190-3197.
69. Rochelle R.A., O.R.M., Michael A.T., Christina M.P., Resham B., J.D., Robertson, Vincent M.R., Y.S. Prakash, Priyabrata M., Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Letters, 2010. 10: p. 2543-2548.
70. Ayush V., F.S., Effect of Surface Properties on Nanoparticle-Cell Interactions. Small, 2010. 6(1): p. 12-21.
71. A. Franceschetti, S.J.P., S. T. Pantelides, Oxygen chemisorption on Au nanoparticles. Chemical Physics Letters, 2003. 374(5-6): p. 471-475.
72. S.D. Puckett, J.A.H., J.D. Keith, W.U. Spendel, G.E. Pacey, Interaction of ozone with gold nanoparticles. Talanta, 2005. 66(5): p. 1242-1246.
73. J.K. Lung, J.C.H., D.C. Tien, C.Y. Liao, K.H. Tseng, T.T. Tsung, W.S. Kao, T.H. Tsai, C.S. Jwo, H.M. Lin, L. Stobinski, Preparation of gold nanoparticles by arc discharge in water. Journal of Alloys and Compounds, 2007. 434-435: p. 655-658.
74. M.R. Lorenz, V.H., A. Musyanovych, K. Nothelfer, P. Walther, H. Frank, Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials, 2006. 24(14): p. 2820-2828.
75. A.K. Gupta, A.S.G.C., Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med, 2004. 15(4): p. 493-496.
76. Stephanie E.A.G., P.A.R., Patrick D.P., J.C. Luft, Victoria J.M., Mary E.N., Joseph M.D., The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA, 2008. 105(33): p. 11613-11618.
77. Feng Z., Y.Z., Ying L., Xueling C., Chunying C., Yuliang Z., Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. small, 2011. 7(10): p. 1322-1337.
78. Kyobum K., D.D., Anqi L., Antonios G.M., John P., Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomaterialia, 2010. 7(3): p. 1249-1264.
79. Edward J., S.J.B., Meghan C., Anthony M.D., Yuri V., Yurii K.G., Nicholas A.K., High-content screening as a universal tool for fingerprinting of cytotoxicity of nanoparticle. ACS Nano, 2008. 2(5): p. 928-938.
80. Wenjuan C., J.L., Yakun Z., Huilin R., Wensheng L., Long J., Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 8(1): p. 46-53.
81. J. Carmichael, W.G.D., A.F. Gazdar, J.D. Minna, J.B. Mitchell, Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res., 1987. 47: p. 936-942.
82. X.L. Wei, Z.H.M., B. Li, J.M. Wei, Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloids and Surfaces B: Biointerfaces, 2007. 59: p. 100-104.
83. Owen T.A., A.M., Shalhoub V., Barone L.M., Wilming L., Tassinari M.S., Kennedy M.B., Pockwinse S., Lian J.B., Stein G.S., Progressive development of the rat oseteoblast phenotype in vitroL reciprocal relationships in gene expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol, 1990. 143: p. 420-430.
84. Liu D.D., Z.J.C., Yi C.Q., Yang M.S., The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Science Bulletin, 2009. 55(11): p. 1013-1019.
85. Ali S., J.H., Ahmet A.Y., Joseph I., Intracellular quantification by surface enhanced Raman spectroscopy. Chemical Physics, 2008. 461: p. 131-135.
86. Omer F.K., E.S., Omer Aydin, Mustafa C., Interaction of gold nanoparticles with mitochondria. Colloids and Surfaces B: Biointerfaces, 2009. 71: p. 315-318.
87. Shetty, G., Kendall, C, Shepherd, N, Stone, N., Barr, H. , Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus. British Journal of Cancer, 2006. 94: p. 1460-1464.
88. Chan, J.W., Taylor, D.S., Zwerdling, T., Lane, S.M., Ihara, K., Huser, T., Micro-raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophysical Journal, 2006. 90: p. 648-656.

無法下載圖示 全文公開日期 2017/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE