簡易檢索 / 詳目顯示

研究生: 吳晨瑋
Chen-Wei Wu
論文名稱: 雙驅動系統疊代式參考輸入成形控制器之研究
Dual Actuator System Iterative Reference Input Shaping Controller Design
指導教授: 張以全
Peter I-Tsyuen Chang
口試委員: 林紀穎
Chi-Ying Lin
黃安橋
An-Chyau Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 51
中文關鍵詞: 雙驅動系統獨立通道設計輸入成形追跡飽和問題
外文關鍵詞: Dual Stage Actuator, Individual Channel Design, ICD, Input shaping, Saturation problem
相關次數: 點閱:553下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討以疊代程序做參考輸入之輸入成形控制設計並應用於雙輸入雙輸出(Double-Input-Double-Output, DIDO)系統,特別是針對雙驅動控制系統(DSA control system)以達到長行程且高精度之定位要求。本文首先對雙驅動系統模型做數學推導及模型參數討論,以此作為回授控制器設計之依據並利用獨立通道設計方法(Individual Channel Desgin, ICD)設計回授控制器以達到期望之追跡表現。然而在系統控制的過程中由於兩驅動器之互相干擾及不同的響應特性可能造成「飽和問題」(saturation problem),本文以疊代方法對低剛性雙驅動定位系統之參考輸入做輸入成形設計,減少了系統移動過程中兩驅動器之間最大相對距離以避免飽和產生的機會且同時滿足追跡之要求,文末以模擬結果驗證本文所提出之設計方法並提供結論與未來研究方向以供參考。


    This thesis outlines and demonstrates the efficacy in designing an iterative reference input shaping controller, applied to a class of Double-Input-Double-Output (DIDO) system, specifically aimed to provide long-stroke precision positioning for Dual Stage Actuator (DSA) systems. Due to the coupling effect from the interaction between the two actuators. This thesis first provides a full analysis to the characteristic of this class of DIDO system, Then secondly provide a relative distance limiting procedure that iteratively modifies the reference input provided to the DSA system. In order to individually design feedback controller for the two actuators in the DSA system, connection and mass difference for the two actuators needs to be characterized, where desired tracking performance in positioning through the individual channel feedback control design is first investigated without full consideration. Furthermore, due to the coupling (disturbance) input to the DSA actuation, this thesis researched a iterative input shaping method, in order to utilize the previously designed feedback controller, but also restrict the relative distance of the two actuators. This work demonstrates the feasibility in providing an automatic tuning algorithm, that will provide a reference input keeping the two actuators in range, focused on a low-stiffness connection.

    Abstract in Chinese Abstract in English Acknowledgements Contents List of Figures List of Tables List of Abbreviations 1 Introduction 1.1  Introduction on Dual-Stage Actuator 1.2  Background 1.3  Literature Review 2 DSA System Modeling 2.1 Mathematical Model Derivation 2.2 The Explanation of Transfer Functions 2.3 DSA Parameter Analysis 2.4 Poles and Zeros of DSA Model 3 Feedback Controller Design and Analysis 3.1 Tolerance Feedback Control Scheme of DSA System 3.2 Feedback Controller Design 3.2.1 Individual Controller Design 3.2.2 Analysis for Robustness of Control System 3.3 Reference Inputs Modification 4 Simulation Results 4.1  Control Plant for Design 4.2  Feedback Controller Design 4.3  Robustness of the Controlled DIDO System 4.4  System Response without References Modification 4.5  Relative Distance Minimization 4.6  Another Simulation Example with Different Original Reference 5 Conclusion and Future Work 5.1 Conclution 5.2 Future Work References Appendix A: DSA model Derivation Appendix B: Smith-McMillan Form

    [1]  R. Horowitz, Y. Li, K. Oldham, S. Kon, and X. Huang, “Dual-stage servo systems and vibration compensation in computer hard disk drives,” Control Engineering Practice, vol. 15, no. 3, pp. 291– 305, 2007.
    [2]  K. Peng, B. M. Chen, T. H. Lee, and V. Venkataramanan, “Design and implementation of a dual-stage actuated hdd servo system via composite nonlinear control approach,” Mechatronics, vol. 14, no. 9, pp. 965–988, 2004.
    [3]  T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi, and A. Sebastian, “Dual-stage nanopositioning for high-speed scanning probe microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1035–1045, 2014.
    [4]  S. Ito, J. Steininger, and G. Schitter, “Low-stiffness dual stage actuator for long rage positioning with nanometer resolution,” Mechatronics, vol. 29, pp. 46–56, 2015.
    [5]  C. E. Ugalde-Loo, E. Lice ́aga-Castro, and J. Lice ́aga-Castro, “2x2 individual channel design matlab toolbox,” in Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005, pp. 7603–7608.
    [6]  A. AlMamun, I. Mareels, T. Lee, and A. Tay, “Dual stage actuator control in hard disk drive-a review,” 2003.
    [7]  S. Ito, J. Steininger, P. I. Chang, and G. Schitter, “High-precision positioning system using a low- stiffness dual stage actuator,” in Mechatronic Systems, no. 1, 2013, pp. 20–27.
    [8]  J. O’reilly and W. Leithead, “Multivariable control by ‘individual channel design’,” International Journal of Control, vol. 54, no. 1, pp. 1–46, 1991.
    [9]  L. Wang, J. Zheng, and M. Fu, “Optimal preview control of a dual-stage actuator system for triangular reference tracking,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2408–2416, 2014.
    [10]  G. Guo, D. Wu, and T. Chong, “Modified dual-stage controller for dealing with secondary-stage actuator saturation,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3587–3592, 2003.
    [11]  M. Kobayashi and R. Horowitz, “Track seek control for hard disk dual-stage servo systems,” IEEE Transactions on Magnetics, vol. 37, no. 2, pp. 949–954, 2001.
    [12]  M. Kobayashi, S. Nakagawa, and S. Nakamura, “A phase-stabilized servo controller for dual-stage actuators in hard disk drives,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 844–850, 2003.
    [13]  J. R. Ryoo, T.-Y. Doh, and M. J. Chung, “Compensator design for a dual-stage actuator in the track- following servo system of optical disk drives,” IEEE Transactions on Consumer Electronics, vol. 51, no. 2, pp. 471–477, 2005.
    [14]  X. Huang, R. Nagamune, and R. Horowitz, “A comparison of multirate robust track-following con- trol synthesis techniques for dual-stage and multisensing servo systems in hard disk drives,” IEEE Transactions on Magnetics, vol. 42, no. 7, pp. 1896–1904, 2006.
    [15]  K. Krishnamoorthy, C.-Y. Lin, and T.-C. Tsao, “Design and control of a dual stage fast tool servo for precision machining,” in Control Applications, 2004. Proceedings of the 2004 IEEE International Conference on, vol. 1. IEEE, 2004, pp. 742–747.
    [16]  B. S. Kim, J. Li, and T. C. Tsao, “Two-parameter robust repetitive control with application to a novel dual-stage actuator for noncircular machining,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 4, pp. 644–652, 2004.
    [17]  S. Koganezawa, Y. Uematsu, T. Yamada, H. Nakano, J. Inoue, and T. Suzuki, “Dual-stage actuator system for magnetic disk drives using a shear mode piezoelectric microactuator,” IEEE Transactions on Magnetics, vol. 35, no. 2, pp. 988–992, 1999.
    [18]  X. Chen, S. Zhang, X. Bao, and H. Zhao, “Master and slave control of a dual-stage for precision positioning,” in 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008, pp. 583–587.
    [19]  B.-j. Hou, J.-s. Gao, and Y.-f. Zhou, “The development of an ultra-precision dual-stage based on a master-slave control system,” in 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM). IEEE, 2012, pp. 727–730.
    [20]  S. J. Schroeck, W. C. Messner, and R. J. McNab, “On compensator design for linear time-invariant dual-input single-output systems,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 50– 57, 2001.
    [21]  H. R. Rapley and W. C. Messner, “Designing controllers for two stage disk drive actuator systems using the pq method and the sbode plot,” IEEE Transactions on Magnetics, vol. 37, no. 2, pp. 944– 948, 2001.
    [22]  D. Hernandez, S. S. Park, R. Horowitz, and A. K. Packard, “Dual-stage track-following servo design for hard disk drives,” in American Control Conference, 1999. Proceedings of the 1999, vol. 6. IEEE, 1999, pp. 4116–4121.
    [23]  R. A. De Callafon, R. Nagamune, and R. Horowitz, “Robust dynamic modeling and control of dual- stage actuators,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp. 247–254, 2006.
    [24]  J. Ding, M. Tomizuka, and H. Numasato, “Design and robustness analysis of dual stage servo system,” in Proceedings of the 2000 American Control Conference, vol. 4. IEEE, 2000, pp. 2605–2609.
    [25]  R. Nagamune, X. Huang, and R. Horowitz, “Robust control synthesis techniques for multirate and multisensing track-following servo systems in hard disk drives,” Journal of dynamic systems, mea- surement, and control, vol. 132, no. 2, p. 021005, 2010.
    [26]  S. Devasia, “Design of feedforward input for output-settling control with dual-stage actuators,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 6, pp. 670–679, 2007.
    [27]  J. Zheng, “Model predictive control of a dual-stage actuator system for fast setpoint tracking,” in 2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2013, pp. 1604–1609.
    [28]  R. Antonello, R. Oboe, S. Bizzotto, E. Siego, Y. Yazaki, W. Ohnishi, and H. Fujimoto, “Feasible trajectory generation for a dual stage positioning system using a simplified model predictive control approach,” in 2015 IEEE International Conference on Mechatronics (ICM). IEEE, 2015, pp. 608– 613.
    [29]  L.Y.Pao,“Multi-input shaping design for vibration reduction,” Automatica, vol.35, no.1, pp.81–89, 1999.
    [30]  S. Hosoe, “On a time-domain characterization of the numerator polynomials of the smith mcmillan form,” IEEE Transactions on Automatic Control, vol. 20, no. 6, pp. 799–800, 1975.
    [31]  D. N. Mohsenizadeh, L. H. Keel, and S. P. Bhattacharyya, “Multivariable controller synthesis using siso design methods,” in 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, pp. 2680–2685.
    [32]  W. Leithead and J. O’REILLY, “m-input m-output feedback control by individual channel design part 1. structural issues,” International Journal of Control, vol. 56, no. 6, pp. 1347–1397, 1992.
    [33]  E. Lice ́aga-Castro, J. Lice ́aga-Castro, and C. E. Ugalde-Loo,“Beyond the existence of diagonal controllers: from the relative gain array to the multivariable structure function,” in Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005, pp. 7150–7156.

    QR CODE